

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: ES – Cluster Elective

Duration: 3 hrs.

Course Code: 19EC6CE1PD

Max Marks: 100

Course: Physical Design

Date: 19.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
			1	a)	Analyze the switching characteristics of a CMOS inverter and obtain the optimal sizing ratio that minimizes the propagation delay.			
				b)	Discuss the different delay models used for characterizing standard cells.	CO1	-	10
			OR					
			2	a)	Demonstrate how the problems of latch-up and Electrostatic Discharge are overcome in design of Input-Output pads.	CO2	PO1	10
				b)	Explain the different file formats in the context of VLSI Physical Design.	CO1	--	10
			UNIT - II					
			3	a)	Analyze the Polish expression $PE = 25V1H374VH6V8VH$ and obtain the slicing tree. Also determine the optimal floorplan using the technique of simulated annealing, given that the (width, height) of blocks 1 to 8 are respectively $\{(2,4), (1,3), (3,3), (3,5), (3,2), (5,3), (1,2) (2,4)\}$. Compute the change in area?	CO3	PO2	12
				b)	Explain Cluster growth and Hierarchical partitioning techniques.	CO1	--	08
			UNIT - III					
			4	a)	Write short notes of the following: i) Global Placement. ii) Pre-placement Sanity Checks.	CO1	--	08
				b)	Discuss the simulated annealing technique for placements with an algorithm, perturb function and Timberwolf schedule function. Also explain the move restrictions with relevant equations.	CO1	--	12

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - IV					
5	a)	Obtain the set-up and hold timing constraints for flip flop-based synchronous design in the presence of clock skew with relevant diagram and equations. Also list the methods to reduce the clock skew.	CO2	PO1	10
	b)	Explain the need for clock buffers with neat figure.	CO1	--	04
	c)	List the advantages and disadvantages of H-tree and X-tree.	CO2	PO1	06
UNIT - V					
6	a)	What is Electron Migration? What are the effects of EM on metal layers? Discuss the various methods to fix EM.	CO1	--	10
	b)	Explain High-tower line search algorithm to find the path between source and the target with the help of an example.	CO1	--	10
OR					
7	a)	Write a short note on (i) DRC (ii) LVS & (iii) ERC.	CO1	--	10
	b)	Differentiate between static and dynamic IR drop. Also specify how to fix those issues.	CO2	PO1	05
	c)	Briefly discuss global and detailed routing.	CO1	--	05
