

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Branch: Electronics and Communication Engineering

Course Code: 22EC6PE2ML

Course: Machine Learning

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.			UNIT – I															
			CO	PO	Marks													
	1	a)	Differentiate supervised, unsupervised and reinforcement ML techniques. Identify the type of machine learning to be applied for the following use cases. Justify your answers. i. Rainfall prediction ii. An intelligent agent navigates the vehicle iii. Spam detection in emails iv. Image segmentation in health care	CO 2	PO2	10												
		b)	Create a data frame with four columns and four rows from lists using Pandas. Check and analyze the following. i. Dimension ii. Get the data types iii. Descriptive statistics iv. Select the first three rows in the data frame v. Drop a column vi. Add a column	CO 3	PO3	10												
		OR																
	2	a)	Analyze the measure of central tendency and measure of dispersion of statistical data analysis.	CO 2	PO2	10												
		b)	Using Numpy and Pandas library functions, elaborate the utilities of linspace(), arrange(), randint(), isna(), info(), Describe() with example.	CO 3	PO3	10												
		UNIT – II																
	3	a)	Consider a scenario where we have given a medical data about some patients. The data contains the information of the blood pressure for a patient along with his/her age. Find the estimators for the best fit line using OLS method for the given data.	CO 1	PO 1	08												
			<table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th>Age in Years(X)</th> <th>Blood Pressure(y)</th> </tr> </thead> <tbody> <tr> <td>37</td> <td>127</td> </tr> <tr> <td>49</td> <td>135</td> </tr> <tr> <td>72</td> <td>160</td> </tr> <tr> <td>84</td> <td>180</td> </tr> <tr> <td>20</td> <td>110</td> </tr> </tbody> </table>			Age in Years(X)	Blood Pressure(y)	37	127	49	135	72	160	84	180	20	110	
Age in Years(X)	Blood Pressure(y)																	
37	127																	
49	135																	
72	160																	
84	180																	
20	110																	

	b)	Given a dataset, outline the steps to implement gradient descent to train a linear regression model. Analyze the potential impact of learning rate on the convergence of the gradient descent algorithm.	CO 2	PO2	08																																								
	c)	Discuss what might happen if the learning rate is too high or too low with the support of a quadratic curve.	CO 2	PO2	04																																								
		OR																																											
4	a)	Consider the following dataset where the target variable is the actual house prices and the predicted house prices are given by a regression model: <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>Actual Price of a house (in Lakh)</td> <td>380</td> <td>180</td> <td>400</td> <td>650</td> <td>890</td> </tr> <tr> <td>Predicted price of a house (in Lakh)</td> <td>410</td> <td>220</td> <td>380</td> <td>590</td> <td>910</td> </tr> </table> Calculate the following evaluation metrics for the given dataset: 1) Mean Absolute Error (MAE), 2) Root Mean Squared Error (RMSE), 3) Relative Squared Error (RSE), 4) R^2 -score.	Actual Price of a house (in Lakh)	380	180	400	650	890	Predicted price of a house (in Lakh)	410	220	380	590	910	CO 1	PO1	08																												
Actual Price of a house (in Lakh)	380	180	400	650	890																																								
Predicted price of a house (in Lakh)	410	220	380	590	910																																								
	b)	Discuss the role of regularization (L1 and L2) in machine learning models. Compare and contrast their effects on model complexity and performance.	CO 2	PO2	08																																								
	c)	Explain the scenario of a model suffering from over fit and under fit. How is regularization used to overcome it?	CO 2	PO2	04																																								
		UNIT - III																																											
5	a)	Design a classification model using Support Vector Machine (SVM). Discuss the steps involved in building SVM classifier.	CO 3	PO3	10																																								
	b)	Design a Decision Tree structure for the dataset below based on the information gain for the features “fever” and “congestion”. Indicate which is the best split root node the model can select. <table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th>Sore throat</th> <th>Fever</th> <th>Swollen glands</th> <th>Congestion</th> <th>Diagnosis</th> </tr> </thead> <tbody> <tr> <td>Yes</td> <td>Yes</td> <td>Yes</td> <td>Yes</td> <td>Covid</td> </tr> <tr> <td>No</td> <td>No</td> <td>No</td> <td>Yes</td> <td>Allergy</td> </tr> <tr> <td>Yes</td> <td>No</td> <td>Yes</td> <td>No</td> <td>Covid</td> </tr> <tr> <td>No</td> <td>Yes</td> <td>No</td> <td>Yes</td> <td>Cold</td> </tr> <tr> <td>Yes</td> <td>No</td> <td>No</td> <td>Yes</td> <td>Allergy</td> </tr> <tr> <td>No</td> <td>Yes</td> <td>No</td> <td>Yes</td> <td>Cold</td> </tr> <tr> <td>Yes</td> <td>Yes</td> <td>No</td> <td>Yes</td> <td>Cold</td> </tr> </tbody> </table>	Sore throat	Fever	Swollen glands	Congestion	Diagnosis	Yes	Yes	Yes	Yes	Covid	No	No	No	Yes	Allergy	Yes	No	Yes	No	Covid	No	Yes	No	Yes	Cold	Yes	No	No	Yes	Allergy	No	Yes	No	Yes	Cold	Yes	Yes	No	Yes	Cold	CO 3	PO3	10
Sore throat	Fever	Swollen glands	Congestion	Diagnosis																																									
Yes	Yes	Yes	Yes	Covid																																									
No	No	No	Yes	Allergy																																									
Yes	No	Yes	No	Covid																																									
No	Yes	No	Yes	Cold																																									
Yes	No	No	Yes	Allergy																																									
No	Yes	No	Yes	Cold																																									
Yes	Yes	No	Yes	Cold																																									

		OR																					
6	a)	<p>Describe the step-by-step process of k-Nearest Neighbors (kNN) algorithm. Explain the significance of distance measures such as Euclidean and Manhattan in the kNN algorithm. Analyze how the choice of distance measure can influence classification outcomes, providing examples to support your explanation.</p> <p>With $X_1 = 7$ and $X_2 = 5$. Guess the classification of new unseen data. ($K=3$)</p> <table border="1"> <thead> <tr> <th>Feature 1 (X1)</th><th>Feature 2 (X2)</th><th>Y</th></tr> </thead> <tbody> <tr> <td>9</td><td>6</td><td>FALSE</td></tr> <tr> <td>8</td><td>4</td><td>TRUE</td></tr> <tr> <td>3</td><td>2</td><td>FALSE</td></tr> <tr> <td>6</td><td>3</td><td>FALSE</td></tr> <tr> <td>12</td><td>8</td><td>TRUE</td></tr> </tbody> </table>	Feature 1 (X1)	Feature 2 (X2)	Y	9	6	FALSE	8	4	TRUE	3	2	FALSE	6	3	FALSE	12	8	TRUE	CO 2	PO2	10
Feature 1 (X1)	Feature 2 (X2)	Y																					
9	6	FALSE																					
8	4	TRUE																					
3	2	FALSE																					
6	3	FALSE																					
12	8	TRUE																					
	b)	Differentiate between the concepts and techniques of ensembling in machine learning, specifically focusing on Bagging and Boosting, and explain how Random Forest utilizes these techniques.	CO 2	PO 2	10																		
UNIT – IV																							
7	a)	Define the Naive Bayes algorithm. Given a small dataset, demonstrate how to classify a new instance using the Naive Bayes algorithm. Show your calculations step-by-step.	CO 2	PO2	08																		
	b)	Differentiate between logit() & sigmoid() functions in the context of logistic regression	CO 1	PO1	06																		
	c)	Compare and contrast the associations between agglomerative clustering and divisive Clustering	CO 1	PO1	06																		
OR																							
8	a)	Derive the process of optimizing the weight parameters with appropriate cost function using Logistic Regression algorithm.	CO 1	PO1	10																		
	b)	With a sample dataset, elaborate the Naïve Bayes algorithm for a binary classifier and mention the Naïve assumptions.	CO 2	PO2	10																		
UNIT – V																							
9	a)	Define Deep Learning and discuss two of its applications. Illustrate a single layer perceptron model.	CO 2	PO2	08																		

	b)	<p>For the given dataset., apply k-means clustering($k=3$) for one iteration and write the cluster assignments. Assume Euclidean distance measure. Consider the 3rd , 6th and 10th data points as the initial centroids.</p> <table border="1"> <thead> <tr> <th>Data point</th><th>X</th><th>Y</th></tr> </thead> <tbody> <tr><td>1</td><td>1.9</td><td>0.97</td></tr> <tr><td>2</td><td>1.76</td><td>0.84</td></tr> <tr><td>3</td><td>2.32</td><td>1.63</td></tr> <tr><td>4</td><td>2.31</td><td>2.09</td></tr> <tr><td>5</td><td>1.14</td><td>2.11</td></tr> <tr><td>6</td><td>5.02</td><td>2.8</td></tr> <tr><td>7</td><td>5.74</td><td>3.4</td></tr> <tr><td>8</td><td>2.25</td><td>3.9</td></tr> <tr><td>9</td><td>6.71</td><td>3.7</td></tr> <tr><td>10</td><td>4.15</td><td>4.2</td></tr> </tbody> </table>	Data point	X	Y	1	1.9	0.97	2	1.76	0.84	3	2.32	1.63	4	2.31	2.09	5	1.14	2.11	6	5.02	2.8	7	5.74	3.4	8	2.25	3.9	9	6.71	3.7	10	4.15	4.2	CO 2	PO2	12
Data point	X	Y																																				
1	1.9	0.97																																				
2	1.76	0.84																																				
3	2.32	1.63																																				
4	2.31	2.09																																				
5	1.14	2.11																																				
6	5.02	2.8																																				
7	5.74	3.4																																				
8	2.25	3.9																																				
9	6.71	3.7																																				
10	4.15	4.2																																				
		OR																																				
10	a)	With a neat diagram of multilayer perceptron, explain how an artificial neural network works.	CO 2	PO2	10																																	
	b)	Analyze different types of clustering used for unsupervised machine learning.	CO 2	PO2	10																																	
