

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Semester: VI

Branch: Electronics and Communication Engineering

Duration: 3 hrs.

Course Code: 22EC6PE2ML

Max Marks: 100

Course: Machine Learning

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	UNIT – I			CO	PO	Marks									
1	a)	Using suitable python libraries, Develop suitable code for the following: i) Print a 3 x 3 matrix A ii) Create a 2D array of size 5 x 5 with ones on diagonal and zero elsewhere iii) Create a dataframe with people, location and age, Display the dataframe. iv) Assume a dataset of 150 samples with four features and three classes, using suitable Library function split 75% of data as training and remaining as test set. Display the shape of train and test set with labels.		CO 3	PO3	10									
	b)	Explain the Reinforcement learning and mention few of its applications.		CO 1	PO1	06									
	c)	Mention the machine learning techniques for the following problems: (i)Prediction of house price from dataset (ii)Prediction of relation between two products in a grocery store (iii)Prediction of loan eligibility from dataset (iv)Predict if an email is junk mail		CO 1	PO1	04									
UNIT – II															
2	a)	Interpret the Gradient Descent algorithm for linear regression. Write the Linear Regression equation and compute the same for the following Data in Table 2(a) where x is the input and y is the corresponding output. Initialize with suitable values Table 2(a)		CO 1	PO1	10									
		<table border="1"> <thead> <tr> <th>x</th> <th>y</th> </tr> </thead> <tbody> <tr> <td>3</td> <td>8</td> </tr> <tr> <td>9</td> <td>6</td> </tr> <tr> <td>5</td> <td>4</td> </tr> <tr> <td>3</td> <td>2</td> </tr> </tbody> </table>	x	y	3	8	9	6	5	4	3	2			
x	y														
3	8														
9	6														
5	4														
3	2														

	b)	<p>What is L1 regularization? For Boston Housing dataset with 506 samples and 105 features, write python code snippet to perform the following</p> <ol style="list-style-type: none"> Apply Lasso to the training set Print the training set score and test set score Number of features used <p>Write your inference if the model displays a training set score of 0.29 and test set score of 0.21 with 4 features.</p>	CO 3	PO3	10															
		OR																		
3	a)	<p>Fit a OLS model for the following data given in the Table 3 (a) where x is an independent variable and y is dependent variable.</p> <table border="1"> <thead> <tr> <th>x</th> <th>y</th> </tr> </thead> <tbody> <tr><td>3</td><td>2.5</td></tr> <tr><td>4</td><td>3.2</td></tr> <tr><td>5</td><td>3.8</td></tr> <tr><td>6</td><td>6.5</td></tr> <tr><td>7</td><td>11.5</td></tr> </tbody> </table> <p>Table 3(a)</p>	x	y	3	2.5	4	3.2	5	3.8	6	6.5	7	11.5	CO 1	PO1	10			
x	y																			
3	2.5																			
4	3.2																			
5	3.8																			
6	6.5																			
7	11.5																			
	b)	<p>Define the following regression metrics:</p> <ol style="list-style-type: none"> Mean Absolute Error Mean Squared Error R^2 score Root Mean Squared Error. <p>Develop python code to implement the above metrics for a regression model given in the Table 3(b)</p> <table border="1"> <thead> <tr> <th>True Values</th> <th>Predicted Values</th> </tr> </thead> <tbody> <tr><td>2.5</td><td>2.1</td></tr> <tr><td>3.7</td><td>3.9</td></tr> <tr><td>1.8</td><td>1.7</td></tr> <tr><td>4.0</td><td>3.8</td></tr> <tr><td>5.2</td><td>5.0</td></tr> </tbody> </table> <p>Table 3(b)</p>	True Values	Predicted Values	2.5	2.1	3.7	3.9	1.8	1.7	4.0	3.8	5.2	5.0	CO 3	PO3	10			
True Values	Predicted Values																			
2.5	2.1																			
3.7	3.9																			
1.8	1.7																			
4.0	3.8																			
5.2	5.0																			
		UNIT - III																		
4	a)	<p>The data obtained from a questionare survey is given in Table 4(a) where X1 represents acid durability in seconds, X2 represents strength in Kg/square meter, Y is the classification. Apply K_NN algorithm with K=3 and classify special paper tissue with X1= 3 and X2=7. Clearly indicate all the steps. Use Euclidean distance measure.</p> <table border="1"> <thead> <tr> <th>X1</th> <th>X2</th> <th>Y</th> </tr> </thead> <tbody> <tr><td>7</td><td>7</td><td>Bad</td></tr> <tr><td>7</td><td>4</td><td>Bad</td></tr> <tr><td>3</td><td>4</td><td>Good</td></tr> <tr><td>1</td><td>4</td><td>Good</td></tr> </tbody> </table> <p>Table 4(a)</p>	X1	X2	Y	7	7	Bad	7	4	Bad	3	4	Good	1	4	Good	CO 1	PO1	10
X1	X2	Y																		
7	7	Bad																		
7	4	Bad																		
3	4	Good																		
1	4	Good																		
	b)	Analyse the bagging and Boosting techniques in machine learning. Mention the key differences between them.	CO 2	PO2	10															

		OR			
5	a)	<p>Consider a dataset with two input features x and y and target class ; classes.</p> <p>x=[4 5 10 4 3 11 14 8 10 12] y=[21 19 24 17 16 25 24 22 21 21] classes= [0 0 1 0 0 1 1 0 1 1]</p> <p>Write python code to perform the following:</p> <ul style="list-style-type: none"> i) Plot the data point with classes ii) Build a kNN classifier with K=1 iii) Predict the class for the new data point (8, 21) iv) Plot the new data point on the plot 	<i>CO 3</i>	<i>PO3</i>	10
	b)	<p>Analyse the following terms used to split a node in a decision tree</p> <ul style="list-style-type: none"> i) Gini impurity ii) Entropy 	<i>CO 2</i>	<i>PO2</i>	10
		UNIT – IV			
6	a)	<p>Create python code snippet to perform the following</p> <ul style="list-style-type: none"> i) Load iris data set ii) Split the dataset with 70% training and 30% testing iii) Build Gaussian Naïve bayes model on training set iv) Make predictions on test set 	<i>CO 3</i>	<i>PO3</i>	10
	b)	<p>Define the following with an example. i) Log loss ii) Jaccard Index iii) Accuracy score</p>	<i>CO 1</i>	<i>PO1</i>	10
		UNIT – V			
7	a)	<p>Discuss K means clustering algorithm using Euclidean distance and manhattan distance measures.</p>	<i>CO 2</i>	<i>PO2</i>	10
	b)	<p>Define Deep Learning and discuss two of its applications. Illustrate a single layer perceptron model.</p>	<i>CO 2</i>	<i>PO2</i>	10
