

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Electronics & Communication Engineering

Duration: 3 hrs.

Course Code: 23EC6PE2ML / 22EC6PE2ML

Max Marks: 100

Course: MACHINE LEARNING

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
1	a)	Explain Python data types with examples: list, tuple, and dictionary.		1	1	6
	b)	Discuss the role of data preprocessing using NumPy and Pandas in ML workflows.		1	1	6
	c)	Interpret the challenges in Machine Learning and explain different ML types with examples.		2	2	8
OR						
2	a)	Write a Python function using conditional and looping statements to calculate the factorial of a number.		1	1	6
	b)	Explain the importance of data visualization using Matplotlib with examples.		1	1	6
	c)	Differentiate between AI and ML. Discuss problems that ML can solve.		2	2	8
UNIT - II						
3	a)	Derive the gradient descent formula for linear regression.		2	2	6
	b)	Compare L1 and L2 regularization with appropriate equations.		2	2	6
	c)	Implement the multiple linear regression model for a dataset ‘data’ given with five features and one target column using python.		3	3	8
OR						
4	a)	Describe the evaluation metrics MAE, MSE, RMSE, and R2-score with examples.		2	2	10
	b)	Using a suitable dataset, outline the steps to build and evaluate a polynomial regression model using python.		3	3	10
UNIT - III						
5	a)	Develop the pseudocode for kNN algorithm and discuss its variants: k-radius and kD tree.		3	3	8
	b)	Analyze the decision tree splitting criteria: gini and entropy.		2	2	8
	c)	Discuss the importance of pruning in decision trees.		2	2	4
OR						
6	a)	Describe the concept of ensemble methods: Bagging and Boosting.		2	2	6

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Write a Python code to build and evaluate a Random Forest classifier for a given dataset of (X,y). Assume that the dataset is cleaned and all the columns are of numeric type.	3	3	8																									
	c)	Illustrate the use of confusion matrix and classification report in evaluating classifiers.	2	2	6																									
UNIT - IV																														
7	a)	Explain the working of Naive Bayes classifier with relevant equation.	1	1	6																									
	b)	Write a python code to develop a binary classifier model using logistic regression	3	3	8																									
	c)	Discuss the use of log loss, Jaccard index, and accuracy score as performance metrics.	2	2	6																									
		OR																												
8	a)	Derive the logistic regression hypothesis using the sigmoid function.	1	1	7																									
	b)	Write a python code to develop a binary classifier model using Gaussian Naïve Baye's algorithm.	3	3	8																									
	c)	Briefly explain the Bernoulli Naive Baye's and its application.	2	2	5																									
		UNIT - V																												
9	a)	Given the data table, apply the K-Means clustering algorithm to partition the dataset into clusters. Given K=2 and centroids as: $x_1=(2, 3, 3, 1)$ and $x_2=(3, 2, 2, 2)$. Apply cosine similarity as distance measure and iterate once through the steps and show if there is mobility of the centroids.	1	1	10																									
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td></td><td>f1</td><td>f2</td><td>f3</td><td>f4</td></tr> <tr> <td>A</td><td>1</td><td>2</td><td>3</td><td>1</td></tr> <tr> <td>B</td><td>2</td><td>1</td><td>2</td><td>2</td></tr> <tr> <td>C</td><td>3</td><td>4</td><td>3</td><td>1</td></tr> <tr> <td>D</td><td>4</td><td>3</td><td>2</td><td>2</td></tr> </table>		f1	f2	f3	f4	A	1	2	3	1	B	2	1	2	2	C	3	4	3	1	D	4	3	2	2			
	f1	f2	f3	f4																										
A	1	2	3	1																										
B	2	1	2	2																										
C	3	4	3	1																										
D	4	3	2	2																										
	b)	Discuss various hierarchical clustering algorithms used in unsupervised learning.	2	2	10																									
		OR																												
10	a)	Describe the basic architecture of an Artificial Neural Network. Mention few examples of Deep Learning applications.	1	1	10																									
	b)	Mention different linkage methods used for agglomerative clustering.	2	2	5																									
	c)	Outline the importance of feature scaling and transformation in unsupervised ML.	2	2	5																									
