

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Branch: Electronics and Communication Engineering

Course Code: 22EC6PE2SV

Course: System Verilog and Verification

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	UNIT – I	<p>1 a) Discuss the different types of Code coverage with examples.</p> <p>b) Discuss the importance of verification and analyze the cost of bugs over time.</p>	<i>CO 1</i>	-	10
		<p>OR</p> <p>2 a) Discuss the key features of System Verilog and compare system Verilog with Verilog.</p> <p>b) Develop a Verilog RTL for a 3-bit counter with asynchronous reset and synchronous set inputs. Also write a test bench using interface with clocking blocks and modports.</p>	<i>CO 3</i>	<i>PO2</i>	10
	UNIT – II	<p>3 a) Develop the Verilog RTL for a T Flip flop with asynchronous active high reset and synchronous set and test it by developing the System Verilog Test Bench that includes interface block with clocking block and mod-ports.</p> <p>b) Discuss the System Verilog event queue in detail.</p>	<i>CO 4</i>	<i>PO 3</i>	12
		<p>OR</p> <p>4 a) Develop the Verilog RTL for a D Flip flop with asynchronous active high reset and synchronous set and test it by developing the System Verilog Test Bench using interface with clocking block and mod-ports.</p> <p>b) Compare packed and unpacked arrays with examples.</p>	<i>CO 4</i>	<i>PO 3</i>	12
	UNIT - III	<p>5 a) Develop a system Verilog RTL for a 4-bit adder with clock and reset pins.</p> <p>b) Develop a SV environment to randomize inputs using Transactor class for the design in 3a) and drive it to the design using driver class.</p>	<i>CO 4</i>	<i>PO 3</i>	8
			<i>CO 4</i>	<i>PO 3</i>	12

		OR			
6	a)	Discuss Inheritance and Polymorphism in System Verilog with suitable examples. Also discuss overriding of methods in the subclass.	<i>CO 1</i>	-	8
	b)	For a 4 bit Universal shift register, develop a SV environment to randomize inputs using Transactor class and drive it to the design using driver class.	<i>CO 4</i>	<i>PO 3</i>	12
UNIT – IV					
7	a)	Using assertions, develop the System Verilog Assertion based Testbench for a divide by 16 counter and generate the assertions when <ul style="list-style-type: none"> i) The output count value is 9 ii) When the reset is activated 	<i>CO 4</i>	<i>PO 3</i>	12
	b)	Discuss the benefits of assertion and also elaborate the 3 main components of concurrent assertions.	<i>CO 1</i>	-	8
OR					
8	a)	Distinguish between immediate assertions and concurrent assertions	<i>CO 1</i>	-	8
	b)	Develop a Verilog RTL for a 4-bit Shift register with mode control for right and left shift operations. Also a load pin is asserted for parallel loading.	<i>CO 4</i>	<i>PO 3</i>	12
UNIT – V					
9	a)	For a 4-bit Arithmetic Logic unit, develop the System Verilog test bench with the following: <ul style="list-style-type: none"> i) Driver Class for defining functional covergroups and coverpoints, Randomizing, driving and sampling the coverage. ii) Transactor class to define the constraint rand properties iii) Program block, Interface and Top module 	<i>CO 4</i>	<i>PO 3</i>	12
	b)	Discuss Mailbox and the methods available in system verilog for accessing mailboxes with suitable examples.	<i>CO 1</i>	-	8
OR					
10	a)	Discuss the following with suitable examples: <ul style="list-style-type: none"> i) Cross coverage ii) Bins iii) Auto_bin_max iv) Transition bin v) At least() 	<i>CO 1</i>	-	10
	b)	Discuss the following with examples: <ul style="list-style-type: none"> i) Cover points ii) Implicit and Explicit Bins 	<i>CO 1</i>	-	10