

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations**Programme: B.E.****Semester: VI****Branch: Electronics and Communication Engineering****Duration: 3 hrs.****Course Code: 22EC6PE2SV****Max Marks: 100****Course: System Verilog and Verification**

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.

UNIT – I			CO	PO	Marks
1	a)	Discuss the key features of System Verilog and compare system Verilog with Verilog.	<i>CO-2</i>	<i>PO-1</i>	8
	b)	Discuss the different types of code coverage with suitable examples.	<i>CO-1</i>	<i>PO--</i>	12
UNIT – II					
2	a)	Develop the Verilog RTL for a D Flip flop with asynchronous active high reset and synchronous set and test it by developing the System Verilog Test Bench using interface with clocking block and mod-ports.	<i>CO-4</i>	<i>PO-3</i>	12
	b)	Discuss System Verilog event queue in detail.	<i>CO-1</i>	<i>PO--</i>	8
UNIT - III					
3	a)	Discuss the following: i) Super ii) subclass iii) overriding iv) polymorphism v) automatic variable	<i>CO-1</i>	<i>PO--</i>	10
	b)	What is the importance of constrained randomization? Discuss with an example.	<i>CO-2</i>	<i>PO-1</i>	10
OR					
4	a)	Develop a system Verilog RTL for a 4-bit adder with asynchronous reset pin. The adder is synchronized with a clock signal.	<i>CO-4</i>	<i>PO-3</i>	8

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
 Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Develop a SV environment to i) randomize inputs for the design in 4a) using transactor class and ii) drive the inputs to the design using virtual interface	CO-4	PO-3	12
		UNIT – IV			
5	a)	Discuss the following: i) Concurrent assertions ii) property iii) sequence iv) assert_property	CO-1	PO--	12
	b)	Using Concurrent Assertions, test for the following scenario: → At posedge of clock → check whether signal a is high → if a is high, check whether signal b goes high after 1 clock cycle delay → if true, then assert property	CO-2	PO-1	8
		UNIT – V			
6	a)	Develop a Verilog RTL for a 4-bit Shift register with mode control for right and left shift operations. Also a load pin is asserted for parallel loading.	CO-4	PO-3	8
	b)	Test the RTL in 6.a) by developing the following i) Driver Class for defining functional covergroups and coverpoints, Randomizing, driving and sampling the coverage . ii) Transactor class to define the constraints iii) Program block, Interface and Top module	CO-4	PO-3	12
		OR			
7	a)	Discuss the following with examples: i) Covergroups and coverpoints ii) Implicit and explicit bins	CO-1	PO--	8
	b)	With a neat diagram, discuss the System Verilog layered test bench architecture.	CO-1	PO--	12
