

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Programme: B.E.

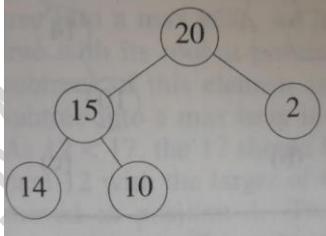
Branch: Electronics and Communication

Course Code: 19EC6PE3DS

Course: Data Structures and Applications

Semester: VI

Duration: 3 hrs.


Max Marks: 100

Date: 17.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.
 3. *All codes MUST be supported by meaningful comments and sample output.*

			UNIT - I		
			CO	PO	Marks
1	a)	Create a database to store approximately 1000k data. Develop a function STORE(data_value, position), where data_value can be of any data type and position specifies where in the data structure the data is to be stored. Similarly, a function, DElete(data_value, position) that will retrieve the data at the specified position in the variable data_value and free the memory location is to be written. Outline the working of the developed functions with a main program.	CO1	PO1	10
	b)	Develop a class to store data using Linked Representation. Include member functions to insert data 'x' at given position 'k'.	CO 1	PO 1	10
UNIT - II					
2	a)	Analyse how memory can be optimally used to store data of a diagonal matrix. List the uses of a diagonal matrix.(no codes)	CO 2	PO 2	05
	b)	Illustrate the scheme of deriving a mapping function for a lower triangular matrix. (no codes)	CO 1	PO 1	05
	c)	Develop a function to add two sparse matrices. Illustrate the working of your code with a sample.	CO 1	PO 1	10
OR					
3	a)	Illustrate with a mapping function the storage mechanism of a tridiagonal matrix.(no codes)	CO 1	PO 1	8
	b)	Analyse how data can be stored in a 1D array to facilitate performing of arithmetic / logical operations. Create a class 'array1D' and include appropriate data and functions for the following code to compile:	CO 2	PO 2	12

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		<pre> array1D<int> obj1(10), obj2(20), obj3(5); // create 3 objects with sizes as indicated obj1 = obj2+obj3; // add the corresponding data of obj2 with that of obj3 and store the result in corresponding positions of obj1 obj2--; // decrement the value of data contained in obj2 by 1 } </pre>			
		UNIT - III			
4	a)	Realise a data structure using linked representation that lets addition and deletion from one end only.	CO 2	PO 2	10
	b)	Explain any one application of queue. Outline the logic with necessary pseudo code .	CO 2	PO 2	10
		OR			
5	a)	Develop a function parenthesis_match(*expr) using an appropriate data structure to check if the left and right parenthesis in the given ‘*expr’ match. Provide sample output.	CO 2	PO 2	10
	b)	Analyse how a circular queue is better than a linear queue. Show pictorially the movement of front and rear pointers with each add and delete operation. Write the equations to check queue full and empty conditions. (NO codes)	CO 2	PO 2	10
		UNIT - IV			
6	a)	Write functions to traverse a tree in any two different ways. Outline with an example.	CO 1	PO 1	10
	b)	Construct an expression tree for the expression $((a+b)>(c-e)) \parallel (a < f \ \&\& (x < y \parallel y > z))$. Mention the number of levels of the tree and the leaf nodes. Write prefix form of the expression. (No codes)	CO 1	PO 1	10
		UNIT V			
7	a)	<p>Discuss max heap. For the heap represented in the adjacent figure, outline the process of inserting 5 and 21 to it. (No codes)</p>	CO 1	PO 1	10
	b)	Discuss AVL trees with an example. Explain the different rotations that can be performed to balance the tree with an example. (No codes)	CO 1	PO 1	10
