

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Electronics and Communication Engineering

Duration: 3 hrs.

Course Code: 19EC6PE3SV

Max Marks: 100

Course: System Verilog and Verification

Date: 17.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks		
			1	a)	Discuss the different types of code coverage with suitable examples.					
					b) Discuss some key features of system Verilog and compare system Verilog with Verilog.	CO 2	PO 1	08		
			UNIT - II							
			2	a)	Develop the Verilog RTL for a JK Flip flop with asynchronous active high reset and synchronous set inputs. Test this by developing the System Verilog Test Bench using interface with clocking block and modports.	CO 3	PO 2	12		
					b) Discuss Dynamic arrays and associative arrays with examples.	CO 2	PO 1	08		
			UNIT - III							
			3	a)	What is inheritance? Discuss its application with suitable examples.	CO 2	PO 1	06		
					b) Develop an RTL to add or subtract 2 four-bit numbers based on control signal. Develop a randomized test bench using transactor and driver to drive the random numbers to the design at posedge of clock.	CO 3	PO 2	14		
			OR							
			4	a)	What is Randomization? Discuss constrained randomization with suitable examples.	CO 2	PO 1	10		
					b) Explain virtual interface with an example. What is Polymorphism?	CO 2	PO 1	10		
			UNIT - IV							
			5	a)	Distinguish between immediate assertions and concurrent assertions with suitable examples.	CO 2	PO 1	10		
					b) Discuss in detail sequence and property.	CO 1	--	10		

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - V					
6	a)	Develop a Mealy FSM that detects “0100” sequence with overlap.	<i>CO 3</i>	<i>PO 2</i>	08
	b)	Test the RTL in 6.a) by developing the following i) Driver Class for defining functional covergroups and coverpoints, Randomizing, driving and sampling the coverage . ii) Transactor class to define the constraints iii) Program block, Interface and Top module	<i>CO 3</i>	<i>PO 2</i>	12
OR					
7	a)	With a neat diagram, discuss the System Verilog layered test bench architecture.	<i>CO 1</i>	--	10
	b)	What are the different coverage options which create the bins for each coverpoint variable defined inside a covergroup?	<i>CO 1</i>	--	10

B.M.S.C.E. - EVEN SEM 2022-23