

--	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

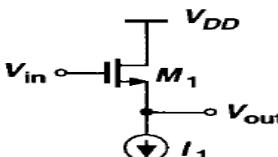
Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

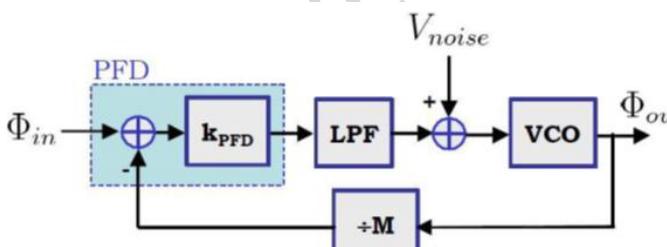
Programme: B.E.

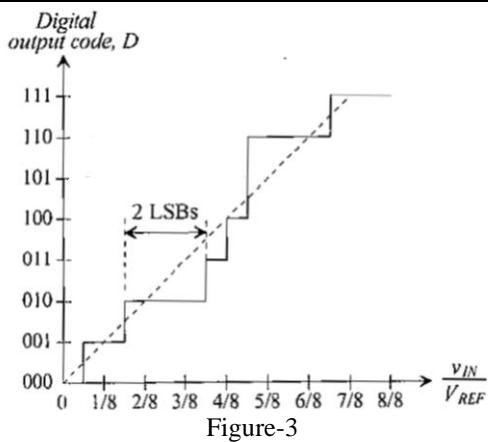
Semester: VI

Branch: Electronics & Communication Engineering

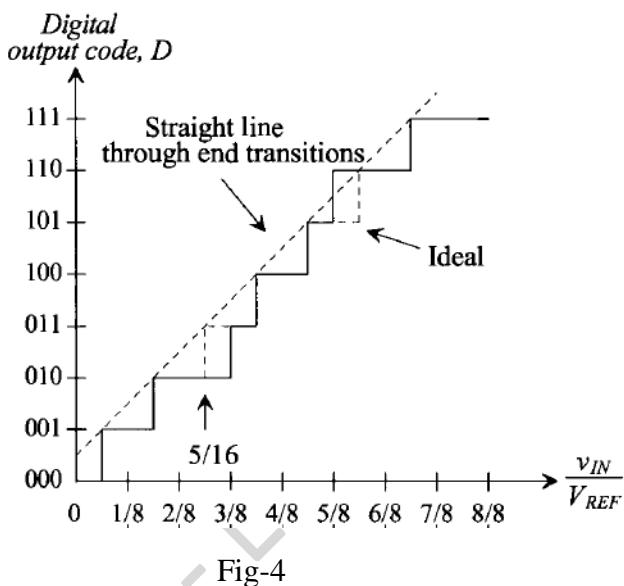

Duration: 3 hrs.

Course Code:16EC6DCMSD


Max Marks: 100


Course: Mixed Signal Design

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.


UNIT - I			CO	PO	Marks
1	a)	Analyze the given circuit to obtain V_{out} if $(W/L)_1 = 20/0.5$. $I_D = 200\mu A$, $V_{th} = 0.6V$, $\mu_n C_{ox} = 50 \mu A/ V^2$, $V_{in} = 1.2V$	2	2	10
		 Fig1			
	b)	Illustrate the working of common source amplifier with Resistive load	1	1	10
OR					
2	a)	Deduce the representation of the minimum and maximum differential input voltage as well as common mode input voltage swing for a source-coupled Differential amplifier.	1	1	10
	b)	Perform the qualitative analysis of a differential pair circuit with the help of input output characteristics plots. Illustrate that small-signal gain is maximum for equal inputs.	2	2	10
UNIT - II					
3	a)	Implement a two stage opamp with single ended output and obtain the overall voltage gain starting with the simple two stage opamp	1	1	10
	b)	Describe op amp design parameters also mention its importance.	1	1	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

OR					
4	a)	Highlight the drawbacks of a single stage Opamp and Show the implementation which can overcome the same.	1	1	10
	b)	Implement a two stage opamp with single ended output and obtain the overall voltage gain starting with the simple two stage opamp	1	1	10
UNIT - III					
5	a)	Analyze the linear model of type 1 PLL assuming under damped system and also obtain the expression for $\omega_{out}(t)$, when the input is a frequency step.	2	2	10
	b)	Describe the various performance parameters of a VCO.	1	1	10
OR					
6	a)	A VCO senses a sinusoidal control voltage $V_{cont} = V_m \cos \omega_m t$, determine the output waveform and spectrum, justify your answer with appropriate description.	2	2	10
	b)	A linear model of a PLL with an active loop filter is shown in figure 2. Derive an expression for the transfer function of the VCO (i.e. ϕ_{out}/v_{out} , where v_{out} and ϕ_{out} are the control voltage and the output phase of the VCO, respectively).	1	1	10
 Figure-2					
UNIT - IV					
7	a)	In a 3 bit R-2R DAC if $R=1.1K\Omega$ and $2R=R_f=2K\Omega$, determine the maximum INL and DNL for the converter. (Assume ideal case to be $R=1K\Omega$). Assume all the switches to be ideal and $V_{REF}=5V$.	2	2	10
	b)	Justify the need to address the Mixed Signal issues in chip design	1	1	10
OR					
8	a)	Identify different errors in Figure-3. Calculate DNL for each digital code and maximum resolution of the converter.	1	1	10

b) Determine the INL for the 3 bit ADC whose transfer curve is shown in Fig-4. Assume that $V_{REF} = 5$ V. Draw the quantization error, Q_e , in units of LSBs.

UNIT - V

9 a) Design a 3-bit DAC using an R-2R architecture with $R = 1 \text{ k}\Omega$, $R_F = 2\text{k}\Omega$, and $V_{REF} = 5\text{V}$. Assume that the resistances of the switches are negligible. Determine the value of I_{TOT} for each digital input and the corresponding output voltage, V_{OUT} . Represent the same on a circuit and tabulate the output voltages.

b) Illustrate the working of a pipeline ADC. What are the advantages and drawbacks of the same?

OR

10 a) Design a 3-bit charge-scaling DAC and find the value of the output voltage for $D_2D_1D_0 = 010$ and 101 . Assume that $V_{ref} = 5 \text{ V}$ and $C = 0.5 \text{ pF}$.

b) Illustrate the binary search operation in a Successive Approximation ADC with a suitable example.
