

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Electronics and Communications Engineering

Duration: 3 hrs.

Course Code: 19EC6PCMSD

Max Marks: 100

Course: Mixed Signal Design

Date: 10.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - III					
3	a)	<p>Design the circuit for a voltage gain of 30 and $I_{SS} = 1.1\text{mA}$ with $V_{DD} = 1.8\text{ V}$. Assume M_1 operates at the edge of saturation if the input common-mode level is 1 V. Also, $\mu_nC_{ox} = 2\mu_pC_{ox} = 100\text{ }\mu\text{A/V}^2$, $V_{TH,n} = 0.5\text{V}$, $V_{TH,p} = -0.4\text{V}$, $\lambda_n = 0.5\lambda_p = 0.1/\text{V}$.</p>	CO3	PO3	09
	b)	<p>Demonstrate the circuit of a 2-stage op-amp with a fully differential Telescopic Op-Amp as the first stage. Write the expressions for their overall voltage gains. Identify the drawback of the telescopic op-amp with appropriate justification.</p>	CO1	PO1	07
	c)	<p>Determine the input common-mode voltage range of the unity-gain buffer given that each device, including the current source has a threshold voltage of 0.3V and an overdrive voltage of 0.1V.</p>	CO1	PO1	04
OR					
4	a)	<p>Determine the aspect ratio of transistors $M_1 - M_9$ in the circuit shown, for the following specifications: $V_{DD} = 3\text{ V}$, peak – to – peak differential output swing = 3 V, power dissipation = 10 mW, voltage gain = 2000. Assume $\mu_nC_{ox} = 60\text{ }\mu\text{A/V}^2$, $\mu_pC_{ox} = 30\text{ }\mu\text{A/V}^2$, $\lambda_n = 0.1\text{ V}^{-1}$, $\lambda_p = 0.1\text{ V}^{-1}$ (for an effective channel length of 0.5 μm), $\gamma = 0$, $V_{thn} = V_{thp} = 0.7\text{ V}$.</p>	CO1	PO1	10

	b)	For a differential amplifier with current mirror load, perform large signal analysis and draw its input-output characteristic.	CO2	PO2
	c)	The circuit shown is designed for a nominal gain of 10, i.e., $1 + R_1/R_2 = 10$. Determine the minimum value of A_1 for a gain error of less than 1%.	CO1	PO1
UNIT - IV				
5	a)	Realize a non-inverting amplifier using switched capacitors and explain its working.	CO3	PO3
	b)	Demonstrate the construction of an integrator using switched capacitor circuits. Draw its output waveform and write the output equation.	CO1	PO1
	c)	Design a precision multiply – by – 2 circuit using switched capacitors.	CO3	PO3
UNIT - V				
6	a)	Define DNL with reference to a DAC. What should be the minimum value of DNL to exhibit monotonicity? Determine the value of 1 LSB, percentage accuracy and full-scale voltage of 3-bit, 6-bit and 8-bit DAC assuming $V_{REF} = 5V$.	CO1	PO1
	b)	Determine the conversion time of a single slope integrating ADC. Briefly describe its working with the help of block diagram.	CO1	PO1
	c)	Design a 3-bit generic current-steering DAC with each current source $I = 5 \mu A$. Find the total output current for each input code. What is its advantage over R – 2R DAC?	CO3	PO3
OR				

	7	a)	Establish the relevance of the following terms with reference to ADC (i) Quantization error (ii) Aliasing (iii) Offset error (iv) INL	CO1	PO1	04
		b)	Design a 3-bit charge-scaling DAC and find the value of the output voltage for $D_2D_1D_0 = 010$ and 110 . Assume that $V_{REF} = 5$ V and $C = 0.5$ pF. Write the equation for the output voltage.	CO3	PO3	05
		c)	Demonstrate the implementation of binary search principle in the successive approximation ADC. Determine the final output of the ADC if $V_{in} = 3V$, $V_{REF} = 5V$ and an 8-bit DAC is used.	CO1	PO1	11

B.M.S.C.E. - EVEN SEM 2022-23