

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Programme: B.E.

Branch: Electronics and Communication Engineering

Course Code: 19EC6PCMSD

Course: Mixed Signal Design

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	A source follower using NMOS current source, which operates as a level shifter is designed to increase the output level by 1V than the input level. Determine the sizes of the transistors if $I_{D1}=I_{D2}=0.5\text{mA}$, $V_{GS2}-V_{GS1}=0.5\text{V}$, $\mu_nC_{ox}=100\mu\text{A/V}^2$, $V_{TH}=0.7\text{V}$, $\lambda=\gamma=0$.	CO1	PO1	8
	b)	Illustrate the working of common source amplifier with resistive load.	CO1	PO1	6
	c)	For the circuit shown in Fig. 1, if I_{REF} requires 0.5 V to operate as a current source, Determine its maximum value?	CO1	PO1	6
UNIT - II					
2	a)	Determine the input common-mode voltage range and the closed loop output impedance of the unity gain buffer shown below in Fig. 2, given: threshold voltage of each device 0.7 V and overdrive voltage 0.3 V. Comment on the result.	CO1	PO1	10

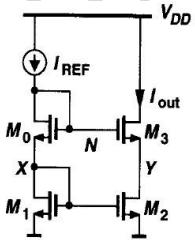


Fig. 1

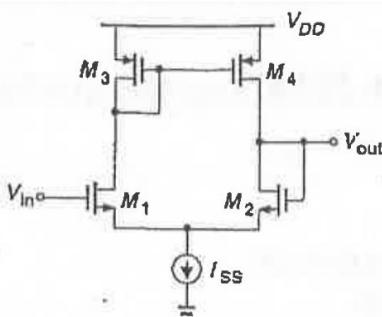


Fig. 2

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>Identify the type of amplifier in Fig. 3, employed in boosting the gain. Also determine the output impedance at the drain of transistor M_3. (Replace ideal current sources with transistors for the calculation). Assume $g_{mn} = 1 \text{ mA/V}$, $g_{mp} = 2 \text{ mA/V}$ and $r_{on} = 5 \text{ k}$, $r_{op} = 10 \text{ k}$.</p>	CO2	PO2	5
	c)	Discuss about input range limitations of unity-gain buffer.	CO1	PO1	5
UNIT - III					
3	a)	Perform the large signal analysis of a differential pair with current mirror load. Also work out the limits on input and output voltage swings.	CO2	PO2	10
	b)	Consider the differential amplifier circuit of Figure 4, $I_{\text{Bias}} = 200 \mu\text{A}$ and all transistors have $W/L = (100 \mu\text{m}/1.6 \mu\text{m})$. Given that $\mu_n C_{\text{ox}} = 92 \mu\text{A/V}^2$, $V_{\text{th}} = 0.8 \text{ V}$, and $r_{\text{ds}} = 8000 \times L(\mu\text{m})/I_{\text{D}}(\text{mA})$. Determine the gain from the differential input to the output.	CO1	PO1	10
		OR			
4	a)	List op-amp design parameters and also discuss their importance.	CO1	PO1	10
	b)	Design a folded cascade op-amp with a PMOS input pair to satisfy the following specifications: $V_{\text{DD}} = 3 \text{ V}$, Maximum differential swing= 2.4 V, total power dissipation= 6 mW, minimum voltage gain= 200. Assume $\mu_n C_{\text{ox}} = 60 \mu\text{A/V}^2$, $\mu_p C_{\text{ox}} = 30 \mu\text{A/V}^2$, $\lambda_n = 0.1 \text{ V}^{-1}$, $\lambda_p = 0.2 \text{ V}^{-1}$, $\gamma = 0$, $V_{T Hn} = V_{T Hp} = 0.7 \text{ V}$, $V_{ISS} = 0.3 \text{ V}$ and V_O for input pair is 0.53V.	CO3	PO3	10
		UNIT - IV			
5	a)	With the help of a neat circuit diagram, discuss the operation of a fully differential amplifier built using switched capacitors.	CO1	PO1	8
	b)	Design a non-inverting amplifier using switched capacitors.	CO3	PO3	6

	c)	<p>In the circuit shown in Figure 5, $C_{in} = 0.5 \text{ pF}$ and $C_H = 2 \text{ pF}$. Determine the minimum op amp gain that guarantees a maximum gain error of 0.1%?</p>	COI	POI	6
		UNIT - V			
6	a)	Discuss mixed signal layout issues at system, device and interconnect levels.	COI	POI	10
	b)	Plot the transfer curve of a 3-bit R-2R DAC if $R = 1.1 \text{ k}\Omega$ and $2R = 2 \text{ k}\Omega$ by making a table of the actual output voltage for each input combinations. Label the node voltage for each input combination, given $V_{REF} = 5 \text{ V}$. If the switches are ideal, determine the maximum INL and DNL of the converter.	CO2	PO2	10
		OR			
7	a)	With the help of neat diagram discuss the construction and working of charge-scaling DACs.	COI	POI	10
	b)	Compare the various types of ADC and also discuss the principles of successive approximation ADC.	CO2	PO2	10
