

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

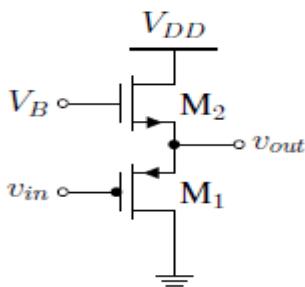
Programme: B.E.

Semester: VI

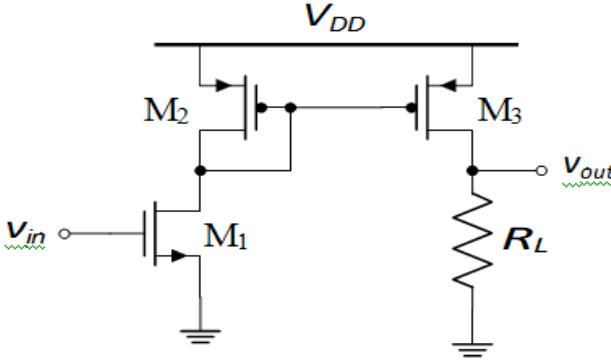
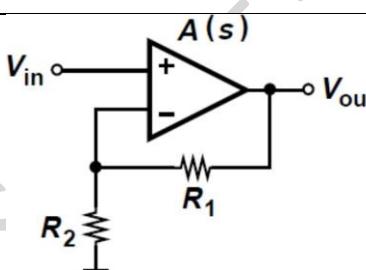
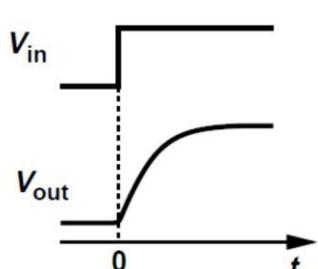
Branch: Electronics and Communication Engineering

Duration: 3 hrs.

Course Code: 19EC6PCMSD


Max Marks: 100

Course: MIXED SIGNAL DESIGN




Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Obtain the small-signal voltage gain of a common source stage with resistive load with channel length modulation taken into account. Also draw the small-signal equivalent model.	CO1	PO 1	10
	b)	A source follower using NMOS current source shown in Figure which operates as a level shifter is designed to increase the output level by 1 V than the input level. Calculate the sizes of both the transistors if $ID1 = ID2 = 0.5$ mA; $VGS2 - VGS1 = 0.5$ V, $\mu nCox = 100 \mu A/V^2$, $VTH = 0.7$ V, $\lambda = \gamma = 0$.	CO1	PO1	10
OR					
2	a)	For the circuit shown in the Figure, if $(W/L) = 50/0.5$, $R_D = 2$ k Ω , $\lambda = 0$ and $\mu nCox = 1.34225 \times 10^{-4}$ A/V 2 , $V_{th} = 0.7$ V, $V_{DD} = 3$ V. (a) What is the small signal gain if M_1 is in saturation and $I_D = 1$ mA? (b) What input voltage places M_1 at the edge of triode region? What is the small-signal gain under this condition?	CO1	PO1	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>Demonstrate that the Common-Source Common-Gate cascode amplifier has:</p> <ul style="list-style-type: none"> (i) Superior gain compared to a common-source amplifier for same voltage swing (ii) smaller difference in drain currents due to a difference in drain voltages than without the stacking transistor (shielding property) 	CO1	PO1
UNIT - II				
3	a)	Perform the qualitative analysis of a differential pair circuit with the aid of input output characteristics plots. Illustrate that small-signal gain is maximum for equal inputs.	CO1	PO1
	b)	<p>A differential amplifier shown in Figure uses resistor than current source to define tail current of 1 mA. Assume $(W/L)_{1,2} = 25/0.5$, $\mu nCox = 50 \mu A/V^2$, $V_{TH} = 0.6 V$, $\lambda = \gamma = 0$ and $V_{DD} = 3 V$.</p> <p>(a) What is the required input CM for which R_{SS} sustains 0.5 V?</p> <p>(b) Calculate R_D for a differential gain of 5.</p> <p>(c) What happens at the output if the input CM level is 50 mV higher than the value calculated in (a)?</p>	CO2	PO2
		OR		
4	a)	<p>Justify the need for current mirrors in integrated circuit design. Consider the circuit in the Figure with $R_L = 10 k\Omega$, $V_{DD} = 1.8 V$ and NMOS (M1): $I_{D1} = 100 \mu A$, $(W/L)_1 = 50 \mu m/1 \mu m$, $\mu nCox = 120 \mu A/V^2$. PMOS (M2): $(W/L)_2 = 100 \mu m/1 \mu m$, $\mu pCox = 60 \mu A/V^2$.</p> <p>PMOS (M3): $(W/L)_3 = 100 \mu m/1 \mu m$, $\mu pCox = 60 \mu A/V^2$.</p> <p>Neglecting channel length modulation, determine</p> <p>(i) the output DC (or average) voltage</p>	CO1	PO1

		(ii) the small-signal voltage gain			
	b)	Perform the quantitative analysis of a differential pair circuit and calculate the differential output current. Indicate the variations of drain currents and the overall trans-conductance of differential pair versus input voltage.	CO1	PO1	10
UNIT - III					
5	a)	Design a telescopic cascode op-amp to satisfy the following specifications: $V_{DD}=3V$, differential output swing = 3 V, power dissipation = 10 mW, voltage gain = 1000. Assume $\mu nCox=60 \mu A V^2$, $\mu pCox=30 \mu A V^2$, $\lambda n=0.1 V^{-1}$, $\lambda p=0.2 V^{-1}$, $\gamma=0$, $V_{TN}= V_{TP} =0.7 V$.	CO3	PO3	10
	b)	With the help of neat circuit diagram and appropriate analyses, obtain the small-signal gain of a differential pair with current mirror load in differential and common-mode.	CO2	PO2	10
OR					
6	a)	<p>In the circuit of Figure assume the Op-Amp is a single pole voltage amplifier. If V_{in} is a small step, calculate the time required for the output voltage to reach within 1% of its final value. What unity-gain bandwidth must the Op-Amp provide if $1 + R_1/R_2 \approx 10$ and the settling time is to be less than 5 ns? For simplicity, assume that the low-frequency gain is much greater than unity.</p>	CO1	PO1	10
	b)	It is required to boost the output impedance of a differential cascode stage. Suggest a suitable circuit and illustrate how output impedance can be boosted substantially with appropriate description.	CO1	PO1	10

UNIT - IV						
7	a)	Realize a non-inverting amplifier using switched capacitors and explain its working.	<i>CO3</i>	<i>PO3</i>	7	
	b)	Demonstrate the construction of an integrator using switched capacitor circuits. Draw its output waveform and write the output equation.	<i>CO1</i>	<i>PO1</i>	6	
	c)	Briefly discuss any two phenomena that affect the precision of sampled analog voltages.	<i>CO1</i>	<i>PO1</i>	7	
OR						
8	a)	With the help of neat circuit diagrams, demonstrate the operation of a multiply-by-two circuit in sampling mode and amplification mode.	<i>CO1</i>	<i>PO1</i>	7	
	b)	What is the need for common-mode feedback in fully differential amplifiers? Demonstrate how switched capacitors can be employed for it.	<i>CO1</i>	<i>PO1</i>	8	
	c)	Discuss the limitations of using a single NMOS and PMOS transistor as a sampling switch and how a transmission gate improves the performance.	<i>CO1</i>	<i>PO1</i>	5	
UNIT - V						
9	a)	Explain the principle of successive approximation. Assume that $V_{in} = 2.49$ V, $V_{REF} = 5$ V and 4-bit for the successive approximation ADC and that the comparator, because of its offset, makes the wrong decision for the MSB conversion. What will be the final digital output?	<i>CO3</i>	<i>PO3</i>	10	
	b)	Discuss mixed signal layout issues.	<i>CO1</i>	<i>PO1</i>	10	
OR						
10	a)	Design a 3-bit charge-scaling DAC and find the value of the output voltage for $D_2D_1D_0 = 010$ and 110 . Assume that $V_{REF} = 5$ V and $C = 0.5$ pF. Write the equation for the output voltage.	<i>CO3</i>	<i>PO3</i>	8	
	b)	Establish the relevance of the following terms with reference to ADC (i) Quantization error (ii) Aliasing (iii) Offset error (iv) INL	<i>CO1</i>	<i>PO1</i>	4	
	c)	Explain the working of a single slope integrating ADC with the help of block diagram and discuss the accuracy issues related to the same.	<i>CO1</i>	<i>PO1</i>	8	