

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Branch: Electronics and Communication Engineering

Course Code: 22EC6PCMSD

Course: Mixed Signal Design

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Perform the qualitative analysis of a differential pair circuit with the aid of input output characteristics plots. Demonstrate that the small-signal gain is maximum for equal inputs.	CO2	PO2	10
	b)	Analyze the circuit shown in Figure 1, given $(W/L) = 50/0.5$, $R_D = 2 \text{ k}\Omega$, $\lambda = 0$, $\mu_n C_{ox} = 1.34225 \times 10^{-4} \text{ A/V}^2$, $V_T = 0.7 \text{ V}$, $V_{DD} = 3 \text{ V}$. (i) What is the small signal gain if M_1 is in saturation and $I_D = 1 \text{ mA}$? (ii) What input voltage places M_1 at the edge of triode region? What is the small-signal gain under this condition?	CO2	PO2	10
UNIT - II					
2	a)	Derive an expression for the small-signal differential gain of an operational transconductance amplifier.	CO1	PO1	10

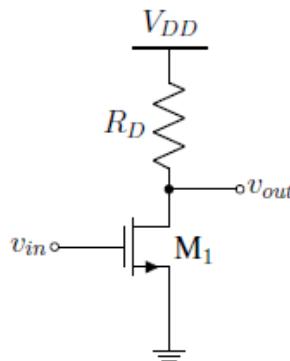
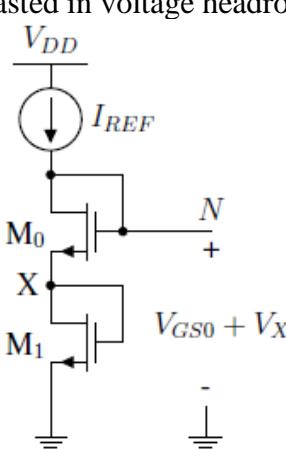
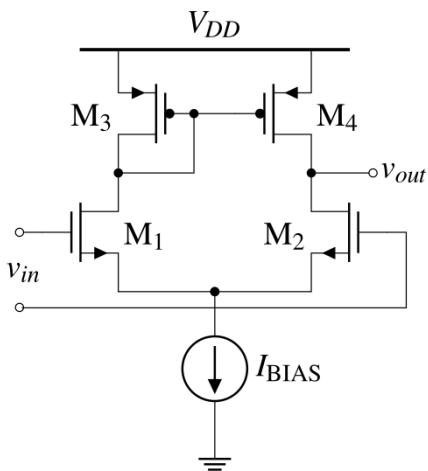
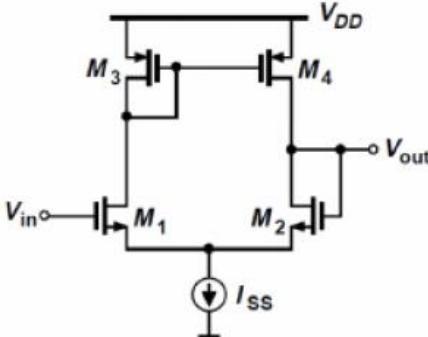
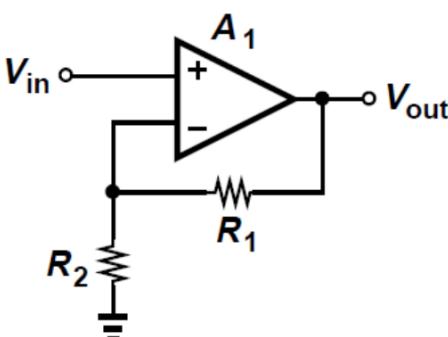






Figure 1: Question 1.(b)

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>Modify the circuit shown in Figure 2 to construct a Cascode current mirror. Analyze the circuit thus obtained and demonstrate that one threshold voltage is wasted in voltage headroom.</p>	CO2	PO2	05
	c)	<p>For the circuit shown in Figure 3, given $I_{BIAS} = 100\mu A$, $(W/L)_{1-4} = 100/1$, $\mu_n C_{ox} = 92 \mu A/V^2$, $V_T = 0.7 V$ and $\lambda_n = \lambda_p = 0.05/V$, find the small-signal differential voltage gain.</p>	CO1	PO1	05
		Figure 3: Question 2.(c)			
		OR			
3	a)	<p>Calculate the input common-mode voltage range and the closed loop output impedance of the unity gain buffer shown below in Figure 4, given: threshold voltage of each device 0.7 V and overdrive voltage 0.3 V. Comment on the result.</p>	CO1	PO1	10
		Figure 4: Question 3.(a)			

	b)	Determine the small-signal voltage gain of the circuit shown in Figure 5.	CO1	PO1	05
	c)	Analyze the large signal behavior of an OTA using 5 transistor realization.	CO2	PO2	05
	UNIT - III				
4	a)	Design a fully differential telescopic Op Amp with the following specifications: $V_{DD}=3V$, differential output swing = 3 V, power dissipation = 9mW, Voltage gain = 1200. Assume $\mu_nC_{ox} = 60 \mu\text{A}/\text{V}^2$, $\mu_pC_{ox} = 30 \mu\text{A}/\text{V}^2$, $\lambda_n = 0.1 \text{ V}^{-1}$, $\lambda_p = 0.2 \text{ V}^{-1}$ (for an effective channel length of 0.5 μm), $\gamma=0$ and $V_{THN}= V_{THP} =0.6\text{V}$.	CO3	PO3	10
	b)	Bring out the importance of the following performance parameters of Op-Amp in the context of system design: (i) Gain (ii) Output swing (iii) Noise and offset (iv) Linearity (v) Small-signal bandwidth.	CO1	PO1	10
	OR				
5	a)	The circuit shown in the Figure 6 is designed for a nominal gain of 10, i.e., $(1 + R_1/R_2) = 10$. Determine the minimum value of A_1 for a gain error of 1%. Also determine the time taken for the output to settle to within 2% of its final value given the unity gain bandwidth of the OpAmp to be $3 \times 10^9 \text{ rad/s}$.	CO1	PO1	10
	b)	<p>Figure 6: Figure 5.(a)</p> <p>Design a two stage op-amp whose first stage is a telescopic cascode stage. Justify that the swing limitation of the telescopic cascode structure is thus overcome.</p>	CO3	PO3	10

UNIT – IV

6	a)	Design a non-inverting amplifier using switched capacitors.	CO3	PO3	10																		
	b)	Determine the maximum DNL (in LSBs) for a 3-bit DAC, which has the characteristics as given in Table 1. Does the DAC have 3-bit accuracy? If not, what is the resolution of the DAC having this characteristic?	CO1	PO1	10																		
		Table 1: Question 6.(b)																					
		<table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th>Digital Input</th> <th>Voltage Output</th> </tr> </thead> <tbody> <tr><td>000</td><td>0 V</td></tr> <tr><td>001</td><td>0.620 V</td></tr> <tr><td>010</td><td>1.560 V</td></tr> <tr><td>011</td><td>2.000 V</td></tr> <tr><td>100</td><td>2.500 V</td></tr> <tr><td>101</td><td>3.130 V</td></tr> <tr><td>110</td><td>3.430 V</td></tr> <tr><td>111</td><td>4.375 V</td></tr> </tbody> </table>	Digital Input	Voltage Output	000	0 V	001	0.620 V	010	1.560 V	011	2.000 V	100	2.500 V	101	3.130 V	110	3.430 V	111	4.375 V			
Digital Input	Voltage Output																						
000	0 V																						
001	0.620 V																						
010	1.560 V																						
011	2.000 V																						
100	2.500 V																						
101	3.130 V																						
110	3.430 V																						
111	4.375 V																						
		UNIT – V																					
7	a)	Determine the output digital code for a 3 bit pipeline ADC for inputs of 2 V, 3 V and 4.5V. Assume $V_{REF}=5$ V. What is the total time taken for the said conversion?	CO1	PO1	10																		
	b)	Design a 3-bit charge-scaling DAC and find the value of the output voltage for i) $D_2D_1D_0 = 010$ and ii) $D_2D_1D_0 = 101$. Assume that $V_{REF}= 5$ V and $C= 0.5$ pF.	CO3	PO3	10																		
