

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January 2024 Semester End Main Examinations

Programme: B.E.

Branch: ES – Cluster Elective

Course Code: 19EC7CE2DL

Course: Deep Learning

Semester: VII

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks								
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Define deep learning and differentiate between supervised and unsupervised machine learning.			<i>CO 2</i>	<i>PO 2</i>	6								
		b)	Interpret with example following linear algebra objects used in machine learning i)Vectors ii)Matrices iii)Tensors iv)Hyper planes			<i>CO 2</i>	<i>PO 2</i>	8								
		c)	Compare the features of partition based and hierarchical clustering algorithms.			<i>CO 2</i>	<i>PO 2</i>	6								
			UNIT - II													
	2	a)	Considering a simple Neural Network of one input node, two hidden nodes and one output node with weights initialized as: $W_{111}= 0.4$, $W_{121}= -0.3$, $W_{211}= -0.23$, $W_{212}= 0.5$ and $b_1=b_2=b_3=1$. Input ‘X’= 2 and output ‘y’ = 5. Applying sigmoid activation and ‘mse’ as the loss function, update W_{111} using gradient descent.			<i>CO 1</i>	<i>PO 1</i>	8								
		b)	Briefly discuss with illustration, Sigmoid, ReLu and Softmax activation functions in terms of their usability.			<i>CO 2</i>	<i>PO 2</i>	6								
		c)	Compare ‘He’ and ‘Xavier’ kernel initializers.			<i>CO 2</i>	<i>PO 2</i>	6								
			OR													
	3	a)	With neat diagram, briefly explain the structural design of a multilayer perceptron. Design a Boolean Ex-OR logic using an appropriate MLP model.			<i>CO 2</i>	<i>PO 2</i>	10								
		b)	Given in the table, the scores for three classes at the output layer of a classifier. Apply the appropriate activation function and calculate the cross entropy loss. The actual output is given as: [1,0,0].			<i>CO 1</i>	<i>PO 1</i>	10								
			<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <th>Class</th> <th>Score</th> </tr> <tr> <td>1</td> <td>1.26</td> </tr> <tr> <td>2</td> <td>-3.22</td> </tr> <tr> <td>3</td> <td>0.85</td> </tr> </table>			Class	Score	1	1.26	2	-3.22	3	0.85			
Class	Score															
1	1.26															
2	-3.22															
3	0.85															

UNIT - III						
4	a)	Write a python program using Keras APIs to develop a multiclass classifier using FCN. The network has 2 dense layers having 16 neurons each and an output layer. The dataset has 8 features and a target column having 3 different classes. Use the hyperparameters appropriately.	<i>CO 3</i>	<i>PO 3</i>	10	
	b)	Analyze the SGD with momentum optimizer and justify it handles the local minima.	<i>CO 2</i>	<i>PO 2</i>	10	
UNIT - IV						
5	a)	Analyze the feature learning process in a convolutional neural network. Compare the features of convolutional layer with those of fully connected layer.	<i>CO 2</i>	<i>PO 2</i>	8	
	b)	Write the Keras APIs for: Conv2D(), Dense(), compile() and predict() for classifier models.	<i>CO 3</i>	<i>PO 3</i>	8	
	c)	Briefly discuss on the possibility of transfer learning partially or completely.	<i>CO 2</i>	<i>PO 2</i>	4	
OR						
6	a)	Design the deep neural network with VGG16 Architecture and calculate the total number of weights being trained in all the convolutional layers. Identify it's major contributions.	<i>CO 3</i>	<i>PO 3</i>	10	
	b)	Considering a 9x9 input image matrix and 3x3 Kernel, illustrate the operation of Convolution with stride=1 and 2. Discuss the concept of padding and dilation.	<i>CO 2</i>	<i>PO 2</i>	10	
UNIT - V						
7	a)	Illustrate one Recurrent Neural Network cell and identify the reason for its vanishing or exploding gradient.	<i>CO 2</i>	<i>PO 2</i>	10	
	b)	With the design, briefly discuss on LSTM architecture.	<i>CO 2</i>	<i>PO 2</i>	10	
