

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2023 Semester End Main Examinations

Programme: B.E.

Branch: ES – Cluster Elective

Course Code: 19EC7CE2LV

Course: Low Power VLSI

Semester: VII

Duration: 3 hrs.

Max Marks: 100

Date: 28.02.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1	a) Explain the latch-up problem of CMOS devices. How can it be overcome?	10
	b) Discuss the switching characteristics of a CMOS inverter and obtain an estimate of the inverter delay.	10

UNIT - II

2	a) With the help of a neat circuit diagram, briefly explain the working of a domino CMOS logic circuit.	08
	b) List the Various mechanisms which affect the sub threshold leakage current and explain any two in detail.	08
	c) A 32 bit off-chip bus operating at 4.8 Volt and 64 MHz clock rate is driving a capacitance of 25 pF/bit. Each bit is estimated to have toggling probability of 0.25 at each clock cycle. What is the power dissipation operating the bus?	04

UNIT - III

3	a) Distinguish between constant-field and constant-voltage feature size scaling	08
	b) Explain Multilevel Voltage Scaling and discuss the challenges in its implementation.	12

UNIT - IV

4	a) What are the different clock gating cells and explain them.	06
	b) What are Glitches? What is the effect of Glitches on power consumption? How are they minimized?	06
	c) Explain the concept of bus encoding, and explain the different types of encoding with a neat diagram.	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

OR

5 a) Draw the circuit diagram of MTCMOS and VTCMOS inverter circuit. **10**
Analyze their leakage power optimizing principle.

b) Illustrate the transistor stack effect. How can it be used to reduce leakage power dissipation in standby mode? **10**

UNIT - V

6 a) Discuss the basic principle of Adiabatic Amplification with neat diagram **10**

b) Define the term energy density in battery, discuss on any 2 popular rechargeable battery technologies **10**

OR

7 a) Prove that the charging of a capacitor C in n steps to a voltage V_{DD} instead of a conventional single-step charging reduces the power dissipation by a factor of n . Discuss the disadvantages of this stepwise charging circuit. **10**

b) Indicate the significance of a battery-aware task scheduling technique in battery driven systems. **10**
