

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2023 Semester End Main Examinations

Programme: B.E.

Semester: VII

Branch: ES – Cluster Elective

Duration: 3 hrs.

Course Code: 19EC7CE2SC

Max Marks: 100

Course: System On Chip

Date: 28.02.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1	a) Compare the various existing hardware and software implementations. Comment on the performance and programmability for various architectures. 10
	b) “Exploiting program parallelism is one of the most important goals in computer architecture” Justify the statement considering the importance of classification of different computer processor architectures. 05
	c) Briefly describe processors with memory off the chip on a multidie module. 05

OR

2	a) Suggest a suitable mechanism to achieve Virtual - to - real address mapping and describe the implementation of the same. 10
	b) Describe the architecture and instruction timing of a pipelined processor. 10

UNIT - II

3	a) Describe with a suitable examples and flow diagram, the processor core selection. 10
	b) With a neat diagram illustrate the overall layout of an M pipelined processor which inspects N instructions by issuing M instructions. 06
	c) Classify the basic architectures of Common instruction sets. 04

OR

4	a) Brief the significance of branch prediction. Classify and explain the same. 10
	b) Discuss the architecture and working of the data paths in generic VLIW processor. 10

UNIT - III

5	a) Describe the top level System Design Process flow for executable and written specifications. 10
---	--

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

b) “The traditional model for ASIC development in the project transitions from phase to phase in a step function, never returning to the activities of the previous phase.” Identify the model which describes the feature specified and explain the same. 10

UNIT - IV

6 a) Discuss the importance of Interfaces to address the Logic design issues for timing closure. 10

b) “Most portable devices need low power designs”-Justify the statement highlighting the types of power dissipations in CMOS circuits. 10

UNIT - V

7 a) “Unlike most bus architectures designed for PCB - based systems, the AMBA AHB bus avoids tristate implementation”- Propose the solution and describe in detail to address the problem in AMBA AHB. 10

b) “NOC systems can be adapted more easily to the rapid advances in process technology or in system architecture.”- Justify the statement. 10
