

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: VII

Branch: Electronics and Communication Engineering

Duration: 3 hrs.

Course Code: 22EC7PE3PD

Max Marks: 100

Course: Physical Design

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	What is ESD event? Discuss the ESD protection circuits to prevent ESD event.	<i>CO1</i>	--	8
		b)	What are standard cells? Predict the average propagation delay of a standard inverter cell and estimate the channel dimension of the PMOS and NMOS so as to have optimum rise and fall time	<i>CO1</i>	--	12
	OR					
	2	a)	Explain the physical design flow for an integrated circuit.	<i>CO1</i>	--	6
		b)	What is Electro-Static Discharge and how does it impact integrated circuits? With the help of neat diagrams, briefly discuss circuits to prevent such events.	<i>CO1</i>	--	8
		c)	Explain the following input files in physical design: (i) .db file (ii) .def file	<i>CO1</i>	--	6
	UNIT - II					
	3	a)	Explain the constructive partitioning techniques.	<i>CO1</i>	--	10
		b)	Highlight the limitations of KL algorithm and describe any two extensions to overcome the same.	<i>CO2</i>	<i>PO1</i>	10
	OR					
	4	a)	What is meant by Multilevel Partitioning? Demonstrate the use of clustering in accomplishing the same.	<i>CO2</i>	<i>PO1</i>	10
		b)	Explain Cluster growth and Hierarchical partitioning techniques.	<i>CO1</i>	--	10
	UNIT - III					
	5	a)	Explain the rectangular dual graph technique with a suitable example. Also specify its drawbacks and methods to overcome the same.	<i>CO1</i>	--	10

	b)	For the given normalized polish expression NPE = 25V1H374VH6V8VH , obtain the slicing tree and apply the simulated annealing technique to obtain the optimized floorplan, given that the (width, height) of modules 1 through 8 are respectively $\{(2,4),(1,3),(3,3),(3,5),(3,2),(5,3),(1,2),(2,4)\}$. Compute the change in area.	CO2	PO1	10
		OR			
6	a)	Discuss the simulated annealing technique for placements with an algorithm, perturb function and Timberwolf schedule function. Also explain the move restrictions with relevant equations.	CO1	--	10
	b)	Consider the force directed placement problem applied to a 4×4 grid. Assume that four blocks A, B, C and D are already pre-placed on the grid locations (0,3), (3,3), (0,0) and (3,1) respectively. A new block S is required to be placed where the weights with respect to the already placed blocks are: $w_{SA} = 10$, $w_{SB} = 4$, $w_{SC} = 8$ and $w_{SD} = 3$. What will the zero-force target location of block S be? Place the blocks on a 4×4 grid.	CO2	PO1	10
		UNIT – IV			
7	a)	Discuss the important of clock tree synthesis. What are the goals of clock routing algorithms?	CO2	PO1	08
	b)	Discuss the set-up time and hold time constraints in presence of skew with relevant diagrams and equations. Discuss the various clock tree routing problem formulations.	CO1	--	12
		OR			
8	a)	Discuss the set-up time and hold time constraints with relevant diagrams and equations.	CO1	--	10
	b)	Apply the concept of clock skew to determine its effect on timing constraints of flip flop-based synchronous design. Briefly describe H-tree clock routing with the help of an example and highlight its advantages.	CO2	PO1	10
		UNIT - V			
9	a)	Write a short note on (i) DRC (ii) ERC and (iii) LVS.	CO1	--	10
	b)	Briefly discuss (i) Channel routing (ii) Switchbox routing and (iii) <i>Over-the-cell</i> (OTC) routing.	CO1	--	10
		OR			
10	a)	Discuss global routing in the contexts of Full-custom design, Standard-cell design and Gate-array design.	CO1	--	10
	b)	What is electromigration? Discuss the various methods to fix electromigration.	CO1	--	10
