

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Branch: Electronics and Communication Engineering

Course Code: 19EC7PCESD

Course: Embedded System Design

Semester: VII

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Compare RISC V/s CISC Processor/Controllers.					
		b)	What is the Significance of "Watchdog Timer" in Embedded Systems? For a watchdog timer working on 4 kHz clock and timeout time of 500ms, calculate the value of the counter.			<i>CO2</i>	<i>PO2</i>	6
		c)	Discuss the Operational and Non-operational quality attributes of embedded systems.			<i>CO1</i>	<i>PO1</i>	7
		OR						
	2	a)	Compare General purpose system and Embedded system.			<i>CO2</i>	<i>PO2</i>	7
		b)	What is an embedded system? Discuss the role of sensors and actuators used in the embedded systems.			<i>CO1</i>	<i>PO1</i>	7
		c)	An integer variable with value 255 is stored in memory location at 0x8000. The processor word length is 8 bits and the processor is a big endian processor. The size of integer is considered as 4 bytes in the system. What is the value held by the memory location 0x8000.			<i>CO1</i>	<i>PO1</i>	6
		UNIT - II						
	3	a)	Illustrate the functioning of I2C protocol when master device has to send data to a slave device on the bus. Draw the timing diagram. Compare with SPI communication protocol.			<i>CO2</i>	<i>PO2</i>	10
		b)	Illustrate the workflow of a DMA controller when an input device sends a DMA request. Why is DMA is preferred than interrupt for faster and bulk data transfer?			<i>CO1</i>	<i>PO1</i>	10
		OR						
	4	a)	With a diagram, discuss the Set Associative mapping technique. Given a 2-level cache design where the hit rates are 88% for the smaller cache and 97% for the larger cache, the access costs for a			<i>CO2</i>	<i>PO2</i>	10

		miss are 12 cycles and 20 cycles, respectively, and the access cost for a hit is one cycle, calculate the average cost of access.			
	b)	Discuss arbitration in Priority and Daisy chain arbiters with neat illustrations	CO1	PO1	10
UNIT - III					
5	a)	Develop an embedded C code to interface a common cathode 7-segment display at GPIO port-0 of LPC 1768 controller.	CO3	PO3	10
	b)	Discuss the Super Loop approach with Pros, Cons and Enhancements.	CO1	PO1	10
OR					
6	a)	List the various Embedded firmware Development Languages/Options. With neat diagram, discuss the machine language conversion process.	CO1	PO1	10
	b)	Develop a device driver pseudocode for communication over I2C bus.	CO3	PO3	10
UNIT - IV					
7	a)	Compare non-preemptive Last come first serve and shortest job first scheduling. Three processes with process IDs P1, P2, P3 with estimated completion time 10, 5, 7 milliseconds and priorities 1, 3, 2 (0-highest priority, 3 lowest priority) respectively enters the ready queue together. A new process P4 with estimated completion time 6ms and priority 0 enters the 'Ready' queue after 5ms of start of execution of P1 in a preemptive priority based scheduling. Assume all the processes contain only CPU operation and no I/O operations are involved.	CO1	PO1	10
	b)	With neat diagram, discuss how memory mapped objects are used in Inter Process Communication.	CO1	PO1	10
OR					
8	a)	Using the dining philosophers problem, discuss the various synchronization issues.	CO1	PO1	10
	b)	What is Priority Inversion? Discuss the two techniques of Priority Inversion Avoidance.	CO1	PO1	10
UNIT-V					
9	a)	Discuss the various techniques available for embedded firmware debugging.	CO1	PO1	10
	b)	Justify the need for cross compilation. Compare and contrast compilation and Cross Compilation.	CO2	PO2	10
OR					
10	a)	With neat diagram, discuss the various components required for an Embedded System Development Environment	CO1	PO1	10
	b)	Discuss in detail the types of files generated during cross-compilation of an Embedded C Code	CO1	PO1	10

B.M.S.C.E. - ODD SEM 2024-25