

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2023 Semester End Main Examinations

Programme: B.E.

Semester: VII

Branch: Electronics and Communication Engineering

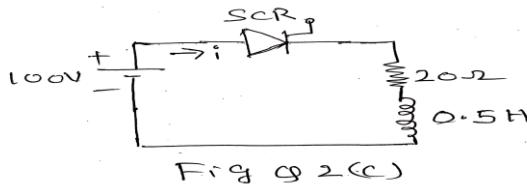
Duration: 3 hrs.

Course Code: 16EC7DCPEL

Max Marks: 100

Course: Power Electronics

Date: 04.03.2023


Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1	a) What is power electronics? Mention some of its industrial applications.	04
	b) List different types of power converters and mention the nature of input and output power in each case.	08
	c) Write the symbol and v-i characteristics of the following devices (i) SCR (ii) IGBT (iii) TRIAC.	06
	d) Compare TRIAC and DIAC	02

UNIT - II

2	a) With a neat sketch explain two transistor model of SCR and derive an expression for the anode current in terms of transistor parameters.	08
	b) Explain the various types of triggering methods of SCR. Which is most commonly used.	08
	c) The latching current of a Thyristor shown in Fig Q2(c) is 50 mA. The duration of the firing pulse is 50 μ sec. Will the Thyristor get fired?	04

OR

3	a) With a neat circuit and waveforms explain the Resistance – Capacitance (RC) full wave trigger circuit.	06
	b) Design UJT relaxation oscillator for triggering SCR with $V_s = 30$ V. The parameters of UJT are $\eta = 0.51$ $I_p = 10 \mu$ A $V_v = 3.5$ V $I_v = 10$ mA & The frequency of oscillation is 60 Hz. The width of triggering pulse is 50 μ sec. Assume V_D = Diode voltage drop = 0.5 V	08
	c) What is the necessity for protecting SCR's against di/dt and dv/dt ? Explain how SCR's are protected against these two.	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III

4 a) With a neat circuit diagram, associated waveforms explain the operation of a single phase full converter & show that the converter can operate in two quadrants by deriving the relevant expression. Assume R-L load with ripple free continuous load current. 08

b) A single phase semi converter feeds power to a resistive load of $R = 10 \Omega$ from 230 V, 50 Hz supply. If the average output voltage is 75% of the maximum possible average output voltage determine i) firing angle ii) average & rms output currents. 05

c) With a neat circuit diagram & associated waveforms explain the working of a single phase dual converter with circulating current mode. 07

UNIT - IV

5 a) Explain the working of step down chopper with resistive load with a neat circuit and waveforms .Also derive the expressions for i) rms output voltage ii) Input power. 08

b) A step down DC chopper has a resistive load of 15Ω and the input voltage $V_s = 200$ V. When the chopper switch is on its voltage drop is 2.5 V. The chopper frequency is 1 kHz. if the duty cycle is 50% find (i) average output voltage (ii) rms output voltage (iii) chopper efficiency 05

c) Explain the principle of operation of a step up chopper with circuit diagram and waveforms. Derive an expression for average output voltage. 07

OR

6 a) What is Buck regulator? Explain its working with circuit and waveforms. Also derive the expression for average output voltage. 10

b) A Boost regulator shown in Fig Q 6(b) has an input voltage of $V_s = 5$ V. The average output voltage $V_a = 15$ V and the average load current $I_a = 0.5$ A. The switching frequency is 25 kHz. If $L = 150 \mu H$ and $C = 220 \mu F$. determine (i) duty cycle (ii) the ripple current of inductor (iii) peak current of inductor (iv) ripple voltage of filter capacitor (v) the critical values of L and C 10

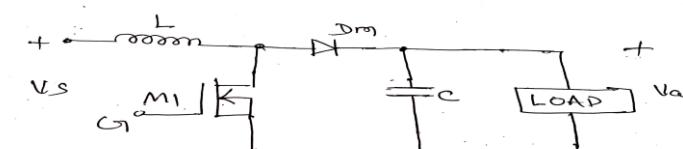


Fig Q 6 (b)

UNIT - V

7 a) Explain single phase full bridge inverter with a neat circuit and waveforms. Derive the expression for rms output voltage. 08

b) Discuss the performance parameters of inverters. 06

c) With a neat circuit explain the variable DC link inverter. 06
