

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: : VII

Branch: Electronics and Communication Engineering

Duration: 3 hrs.

Course Code: 19EC7PCRFM

Max Marks: 100

Course: RF & Microwave Engineering

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Explain the RF circuit design considerations for High RF circuits	<i>CO 1</i>	---	5
	b)	Explain in brief reflection co-efficient, Transmission coefficient and Standing wave, w.r.t a transmission line. Obtain the relation between them	<i>CO 1</i>	<i>PO 1</i>	7
	c)	A Telephone line has the following parameters $R=6 \text{ ohm/km}$ $G=0.05 \mu \text{mho/km}$, $f=1\text{kHz}$, $L=2.2 \text{ mH/km}$, $C=0.005\mu\text{F/km}$, calculate 1) Characteristic impedance Z_0 . 2) The propagation constant γ , α , and β if the length of the line is 100Km	<i>CO 1</i>	<i>PO 1</i>	8
OR					
2	a)	Explain the effects of RF/MW signals in a circuit which are not present at DC or low AC	<i>CO 1</i>	---	5
	b)	Find the reflection co-efficient and VSWR for the following loads. 1) $Z_L=0$, 2) $Z_L=\infty$, 3) $Z_L=Z_0$,4) $Z_L=+jx$ 5) $Z_L=-jx$	<i>CO 1</i>	<i>PO 1</i>	8
	c)	A 50ohm lossless line connects a matched signal of 100k Hz. to a load of 100 ohm. The load power is 100mW.Calculate the, a. Voltage reflection coefficient of the load, b. VSWR of the load, c. Position of the first V_{\min} and V_{\max} d).impedance at V_{\min} and V_{\max} .	<i>CO 2</i>	<i>PO 2</i>	7
UNIT - II					
3	a)	Justify mathematically that the impedance and the admittance matrices are symmetrical for a reciprocal junction (network)	<i>CO 1</i>	<i>PO 1</i>	6
	b)	Develop the scattering matrix for a general two-port system. The derivation must include all the necessary equations and the generalized system.	<i>CO 1</i>	<i>PO 1</i>	6

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	<p>S-parameters of a two-port network are given by</p> $\mathbf{S} = \begin{bmatrix} 0.2\angle0^\circ & 0.6\angle90^\circ \\ 0.6\angle90^\circ & 0.1\angle0^\circ \end{bmatrix}$ <p>Analyze to show that the network is Reciprocal but not Lossless. And also the Return loss at port1 when port 2 is short circuited.</p>	CO 2	PO 2	8
		OR			
4	a)	Justify the need of S-parameters in the analysis of microwave circuit and also define S-parameter.	CO 1	PO 1	6
	b)	Two transmission lines of characteristic impedance Z_1 and Z_2 are joined at plane PP'. Express S-parameters in terms of impedances when each line is matched terminated.	CO 2	PO 2	8
	c)	Prove any three properties of Scattering -Matrix	CO 2	PO 2	6
		UNIT - III			
5	a)	Derive the S-matrix for H-plane Tee	CO 1	PO 1	6
	b)	Define Coupling factor and Directivity of Directional coupler. Waveguide termination having VSWR Of 1.1 is used to dissipate 100 watts. Compute the reflected power	CO 1	PO 1	6
	c)	Analyze the construction and operation of a Magic-Tee with neat diagram and it's S-matrix.	CO 2	PO 2	8
		OR			
6	a)	Explain the working principle of circulator. Prove that it is impossible to construct a perfectly matched lossless reciprocal three port junction.	CO 1	PO 1	6
	b)	Describe Faradays Rotation Isolator with figure. Write the S-matrix for lossless matched isolator	CO 1	PO 1	6
	c)	A matched isolator has insertion loss of 0.5dB and an isolation of 25 dB. Find the scattering coefficients. Write the s-matrix.	CO 2	PO 2	8
		UNIT - IV			
7	a)	Explain the typical characteristics and applications of GUNN diode.	CO 1	PO 1	5
	b)	Explain the PIN diode With a neat sketch and the application of PIN diode as a Single switch.	CO 1	PO 1	7
	c)	Analyse working principle of operation of Avalanche transit time devices? Give the performance comparison of the three ATTs	CO 2	PO 2	8
		OR			
8	a)	Describe the constructional details and equivalent circuit of Gunn diode	CO 1	PO 1	5

		b)	Analyze the principle of operation of TRAPATT diode with a neat diagram and current-voltage waveform.	CO 2	PO 2	7
		c)	With a neat sketches ,explain the IMPATT diode operation.	CO 1	PO 1	8
UNIT - V						
9	a)		Explain the effects of Microwaves on Human body.	CO 1	PO 1	5
	b)		Explain electromagnetic compatibility and why it should be considered?	CO 1	PO 1	5
	c)		Describe the fabrication techniques and list the basic properties of the materials used for MMIC fabrication.	CO 2	PO 2	10
OR						
10	a)		List the advantage of RF MEM switches over solid state switches	CO 1	PO 1	5
	b)		Explain the Medical and Civil applications of Microwaves.	CO 1	PO 1	5
	c)		Describe any two applications of Microwave Imaging.	CO 2	PO2	10

B.M.S.C.E. - ODD SEM 2024/25