

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

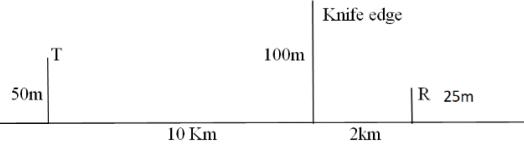
Programme: B.E.

Branch: Electronics and Communication Engineering

Course Code: 22EC7PCWCN

Course: Wireless Communication and Networks

Semester: VII


Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT - I	CO	PO	Marks
1	a)	Describe the operation of Mobile IP with the help of a schematic diagram.	CO 1	-	8
	b)	Discuss the features of Wi-Fi and Bluetooth technologies.	CO 2	PO 1	6
	c)	Write the evolution of 2G to 5G with respect to data rate and applications.	CO 2	PO 1	6
		OR			
2	a)	Describe the architecture of GSM mobile communication with the help of a clear block diagram.	CO 1	-	8
	b)	How is the handoff process implemented in GSM, and what are its types and significance in ensuring seamless communication?	CO 2	PO 1	6
	c)	Compare FDMA, TDMA, and CDMA multiple access techniques	CO 2	PO 1	6
		UNIT - II			
3	a)	What are the different ways of improving capacity in cellular systems?	CO 2	PO 1	8
	b)	If a signal to interference ratio of 15dB is required for satisfactory forward channel performance of a cellular system, what is the frequency reuse factor and cluster size that should be used for maximum capacity if the path loss exponent is (a) $n=4$. (b) = 3? Assume that there are 6 co-channels cell in the first tier, and all of them are at the same distance from the mobile. Assume $N=7$.	CO 2	PO 1	4
	c)	Discuss various channel assignment strategies used in cellular network.	CO 2	PO 1	8
		OR			

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	4	a)	Distinguish between co channel and adjacent channel interference with an example.	CO 2	PO 1	7
		b)	If a total of 33 MHz of bandwidth is allocated to a particular FDD cellular telephone system which uses two 25KHz simplex channels to provide full duplex voice and control channels, compute the number of channels available per cell if a system uses a) 4-cell reuse b) 7 –cell reuse and c) 12-cell reuse. If 1 MHz of the allocated spectrum is dedicated to control channels, determine an equitable distribution of control channels and voice channels in each cell for each of the three systems.	CO 2	PO 1	7
		c)	Illustrate the concept of cellular frequency reuse for a cluster size of N equal to 7.	CO 2	PO 1	6
			UNIT - III			
	5	a)	Explain with the diagram two ray Ground Reflection model and write the relevant expression for total electric field.	CO 3	PO 2	10
		b)	Calculate the following parameters. i) Transmitter power in dB. ii)Power at the receiver in dB iii) Pathloss in dB if height of transmitting antenna is 35meters and receiving antenna is 3 meters. Assuming free space propagation and a receiver is located 10 km from a 50 W transmitter. The carrier frequency is 900 MHz, antenna gain at transmitter and receiver is $G_t = 1\text{dB}$, and $G_r = 1\text{dB}$.	CO 2	PO 1	10
			OR			
	6	a)	Explain the Okumara and Hata Model. List applications where these models are applicable	CO 3	PO 2	10
		b)	For the geometry shown in figure 6b determine a) the loss due to knife-edge diffraction and b) the height of the obstacle required to induce 6 dB diffraction loss. Assume $f=900\text{ MHz}$.	CO 2	PO 1	10
			UNIT - IV			
	7	a)	Explain the architecture of LTE with a neat diagram and state functionalities of all elements	CO 2	PO 1	10
		b)	Explain with neat transmitter structure of OFDMA in 4G system	CO 2	PO 1	10

OR					
	8	a)	Explain the LTE frame structure and indicate number of subcarriers and bandwidth of subcarrier	CO 2	PO 1 10
		b)	Explain the downlink transmission and reception process in the evolution of LTE to 4G	CO 2	PO 1 10
UNIT - V					
	9	a)	List the Requirements and key performance indicators of 5G	CO 2	PO 1 10
		b)	Explain with neat structure 5G core Service-Based Architecture	CO 2	PO 1 10
OR					
	10	a)	Explain Device to Device and Mobile to Mobile application in 5G	CO 2	PO 1 10
		b)	Discuss the need for i) Multi RAT ii) small cells in 5G	CO 2	PO1 10
