

B.M.S. College of Engineering, Bengaluru-560019

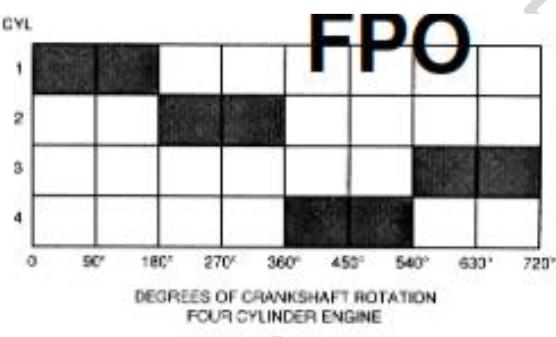
Autonomous Institute Affiliated to VTU

May / June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VIII

Branch: Institutional Elective


Duration: 3 hrs.

Course Code: 23EC8OE3AE

Max Marks: 100

Course: Automotive Electronics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			<i>CO</i>	<i>PO</i>	Marks
1	a)	Analyse the following pulse diagram and comment on the operation of SI engine with suitable diagrams.	<i>CO1</i>	<i>PO1</i>	10
	b)	Briefly explain the working of a spark plug with a neat diagram. Also explain how spark pulse is generated with help of circuit diagram.	<i>CO 1</i>	<i>PO1</i>	10
		OR			
2	a)	Analyse the different components of a conventional ignition system of an SI Engine along with their functional importance	<i>CO1</i>	<i>PO1</i>	10
	b)	Explain four stroke engine on the basis of following actions: i) Intake ii) Compression iii) Power iv) Exhaust	<i>CO 1</i>	<i>PO1</i>	10
UNIT - II					
3	a)	Provide the Block Diagram of an electronic fuel control system. Analyze the operation using suitable diagrams	<i>CO2</i>	<i>PO2</i>	10
	b)	Define the following terms in the context of Engine Performance: (a) Power (b) BSFC (c) Torque (d) Volumetric Efficiency (d) Thermal Efficiency (e) Calibration	<i>CO1</i>	<i>PO1</i>	10
		OR			

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	4	a)	Analyze the effects of the following on performance of automotive system: (a) Air/Fuel Ratio (b) Spark Timing (c) Exhaust Gas Recirculation (EGR)	CO2	PO2	10
		b)	Discuss the working of an electronic engine control system with the help of a Block Diagram.	CO 1	PO1	10
UNIT - III						
5	a)		Where is the Hall Effect Sensor used? Explain with suitable diagrams the working of a Hall Effect Position Sensor.	CO 1	PO1	10
	b)		What is an actuator? Explain working of an Fuel Injector Actuator in detail.	CO 1	PO1	10
OR						
6	a)		What is an actuator? Explain working of an Ignition Actuator in detail.	CO 1	PO1	10
	b)		What is the importance of the Throttle Angle Sensor? Explain with suitable diagrams the working of an Throttle Angle Sensor.	CO 1	PO1	10
UNIT - IV						
7	a)		Analyze the mechanism of brake pressure modulation and analyze how it is put to work in an Antilock Braking System with the help of a Block Diagram.	CO2	PO2	10
	b)		List all the important features of the CAN Protocol. Illustrate the frame format and explain.	CO2	PO2	10
OR						
8	a)		Analyze the working of a typical cruise control system with a block diagram	CO2	PO2	10
	b)		List all the important features of the LIN Protocol. Illustrate the frame format and explain.	CO2	PO2	10
UNIT - V						
9	a)		Explain the concept and operation of a Series Hybrid Electric vehicle	CO3	PO6	10
	b)		Explain the construction and working principle of Lithium Ion Battery. State the advantages and disadvantages.	CO3	PO6	10
OR						
10	a)		Explain the concept and operation of a Parallel Hybrid Electric vehicle	CO3	PO6	10
	b)		List and briefly elaborate the various tests performed on automotive batteries.	CO3	PO6	10
