

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Electronics and Instrumentation Engineering

Duration: 3 hrs.

Course Code: 19EI3PCLOI

Max Marks: 100

Course: Laser and Optical Instrumentation

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	With the help of energy- level diagram and circuit diagram, explain the operating principle of Helium-Neon laser.		CO2	PO1	10
		b)	Explain in detail the different types of Q-switching techniques.		CO2	PO1	10
OR							
	2	a)	With the help of neat diagram explain the construction and working of Nd-YAG laser		CO2 CO3	PO1	10
		b)	Explain frequency stabilization technique in laser and discuss how it is achieved in asymmetric power method.		CO2 CO3	PO1	10
UNIT-II							
	3	a)	With necessary block diagram, describe the pulse echo technique of measuring large distances.		CO2 CO3	PO1	10
		b)	With a neat sketch, explain laser welding process. Mention its advantages and limitations.		CO2 CO3	PO1	10
UNIT - III							
	4	a)	Enumerate and discuss the various types of optical fibers and their properties.		CO2 CO3	PO1	10
		b)	Describe Absorption losses and Scattering losses in an optical fiber.		CO2	PO1	10
UNIT-IV							
	5	a)	Differentiate between intrinsic and extrinsic fiber optic sensor. Explain phase modulation sensor working principle.		CO2	PO1	10
		b)	Discuss how fiber optic sensor can be employed to make the following measurements:		CO2	PO1	10

		(i) Current measurement (ii) Flow measurement			
		OR			
6	a)	With the help of neat sketch, discuss the working principle of micro bend optical fiber sensors	<i>CO2</i> <i>CO3</i>	<i>PO1</i>	10
	b)	What is meant by integrated optics? Discuss any two integrated optics devices in detail.	<i>CO2</i> <i>CO3</i>	<i>PO1</i>	10
		UNIT - V			
7	a)	With necessary schematic diagram, explain the method of measurement of current and strain in fiber optic instrumentation.	<i>CO4</i>	<i>PO1</i>	10
	b)	Discuss the interferometry method of measurement of liquid level in fiber optic instrumentation.	<i>CO4</i>	<i>PO1</i>	10
