

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Electronics and Instrumentation Engineering

Duration: 3 hrs.

Course Code: 19EI3PCLOI

Max Marks: 100

Course: Laser and Optical Instrumentation

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Explain the construction and working principle of Ruby Laser with relevant energy level diagrams.	CO2	PO1	10
	b)	Describe the mode locking method in laser and explain the same using EO switch method.	CO2	PO1	10
OR					
2	a)	Explain the construction and working principle of CO2 Laser with relevant energy level diagrams.	CO2	PO1	10
	b)	What is frequency stabilization technique? With relevant diagram explain the asymmetric power method.	CO2	PO1	10
UNIT - II					
3	a)	Discuss how beam modulation telemetry can be used to measure intermediate distances.	CO3	PO2	10
	b)	Write a note on various laser machining process and also highlight the main advantages of laser machining methods.	CO3	PO2	10
OR					
4	a)	“Holography is a technique that records the light scattered from an object and subsequently at a later time, reconstructs the object’s image”, justify this statement using relevant diagrams.	CO3	PO2	10
	b)	With relevant diagram discuss the Laser Doppler velocimetry to measure velocity of fluid.	CO3	PO2	10
UNIT - III					
5	a)	List the advantages and application of the optical fiber communication system.	CO3	PO2	05
	b)	What is intermodal dispersion? Derive a formula for Δt_{max} , the maximum intermodal dispersion.	CO3	PO1	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Calculate the critical angle of incidence θ_c and the largest angle the ray can have with the axis of step-index fibre with core and cladding refractive indices of 1.54 and 1.51 respectively. Also, calculate the full acceptance angle.	CO3	PO2	05
		OR			
6	a)	Summarize the following attenuation losses in optical fiber i) Absorption loss, ii) Scattering loss and iii) Radiation loss	CO3	PO1	10
	b)	With neat diagram explain the different types of optical fiber with respect to refractive index and number of modes.	CO3	PO1	10
		UNIT - IV			
7	a)	Distinguish between extrinsic and intrinsic fiber optic sensors.	CO4	PO1	06
	b)	With a neat sketch explain the basic principle of measuring the temperature using fluro-optic temperature sensor.	CO4	PO1	07
	c)	Explain how small displacements are measured using an active multiple mode fibre?	CO4	PO2	07
		OR			
8	a)	With a neat schematic diagram explain the passive fiber optic displacement transducers.	CO4	PO2	06
	b)	With neat diagram and mathematical equation explain the polarimetric temperature fiber optic sensor.	CO4	PO2	08
	c)	Discuss the measurement of current using fiber optic sensor.	CO4	PO1	06
		UNIT - V			
9	a)	With relevant diagrams explain the working of Mach-Zehnder interferometer and Michelson interferometer method.	CO4	PO1	10
	b)	Explain the operating principle of fiber optic gyroscope with relevant diagrams. Derive an expression for phase shift and also mention its applications.	CO4	PO1	10
		OR			
10	a)	What are Fiber Bragg gratings? Explain how FBG sensors are used to measure the strain with relevant diagrams.	CO4	PO1	10
	b)	Describe the measurement of liquid level using fiber optic sensor.	CO4	PO1	10
