

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Electronics and Instrumentation Engineering

Duration: 3 hrs.

Course Code: 23EI3ESLOI

Max Marks: 100

Course: Laser and Optical Instrumentation

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

MODULE - I			CO	PO	Marks
1	a)	With the help of a neat sketch explain the rotating –mirror type of Q-switching.	CO1	PO1	06
	b)	Describe the construction and working principle of carbon dioxide (CO ₂) laser:	CO1	PO1	08
	c)	Discuss, how frequency stabilisation is achieved in a laser diode.	CO1	PO1	06
OR					
2	a)	List and explain any four special characteristics of Laser.	CO1	PO1	04
	b)	With a neat sketch, explain the construction, working and energy level diagram of the Nd – YAG laser.	CO1	PO1	10
	c)	What is Mode Locking? Describe passive mode locking.	CO1	PO1	06
MODULE - II					
3	a)	With a neat schematic diagram, explain the measurement of distance using beam modulation telemetry.	CO2	PO2	10
	b)	Describe the holographic construction and reconstruction processes with neat diagrams.	CO2	PO2	10
OR					
4	a)	With the necessary block diagram and equations, explain distance measurement using the pulse echo technique (Time-of Flight).	CO2	PO2	10
	b)	Highlight the main advantages of the laser machining process over conventional machining process. Also, explain the different laser machining process.	CO2	PO2	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

MODULE- III					
5	a)	What is intermodal dispersion? Derive the formula for ΔI_{\max} , the maximum intermodal dispersion.	CO3	PO1	08
	b)	Explain the different types of losses in optical fiber.	CO3	PO1	08
	c)	Calculate the critical angle of incidence, θ_c and the largest angle the ray can have with the axis of step-index fibre, given that the core and cladding refractive indices are 1.54 and 1.51, respectively.	CO3	PO2	04
OR					
6	a)	List and explain the advantages and disadvantages of optical fibre.	CO3	PO1	06
	b)	Describe in detail the step index fibre and graded-index fibre.	CO3	PO1	10
	c)	Calculate the maximum radius for a single-mode optical fibre with core and cladding refractive indices of 1.54 and 1.49, respectively. The wavelength of the radiation is $1\mu\text{m}$.	CO3	PO2	04
MODULE - IV					
7	a)	Explain the construction and working of intensity-modulated fiber optic sensors with the help of a neat diagram.	CO3	PO1	08
	b)	Discuss the working principle of Fiber Bragg Grating sensors in strain measurement.	CO3	PO2	08
	c)	Differentiate between intrinsic and extrinsic fiber optic sensors.	CO3	PO1	04
OR					
8	a)	Write a short note on the following: i. Fiber Optic current sensor ii. Passive Multimode fiber optic sensors.	CO3	PO1	10
	b)	Describe the construction and working principle of a fiber optic gyroscope with a neat diagram.	CO3	PO2	10
MODULE- V					
9	a)	Explain the operation of Mach-Zehnder interferometer to measure the phase difference with a neat sketch.	CO4	PO2	10
	b)	Describe how temperature is measured using Michelson interferometer with the help of a diagram.	CO4	PO2	10
OR					
10	a)	Describe with a neat sketch, the operation of remote-sensing polarimetric temperature sensor.	CO4	PO6	10
	b)	What is LiDAR technology, and how does it function in autonomous vehicles? Describe the key components of a LiDAR sensor used in autonomous vehicles and their respective functions	CO4	PO2 PO6	10
