

U.S.N.							
--------	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Branch: Electronics and Instrumentation Engineering

Course Code: 23EI3ESLOI

Course: Laser and optical Instrumentation

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	With a neat schematic and energy level diagram, explain the construction and working of Nd-YAG LASER.	CO1	PO2	08
	b)	What is Mode Locking? Explain about active mode locking and passive mode locking.	CO1	PO2	08
	c)	Calculate the pulse duration and pulse separation of a mode-locked laser which has a line width of 2×10^{11} Hz. The length of the laser is 1m.	CO1	PO2	04
OR					
2	a)	Discuss about construction and working of CO2 laser.	CO1	PO2	08
	b)	Describe how frequency stabilization is achieved in a laser diode.	CO1	PO2	06
	c)	Explain the rotating-mirror type Q-switching with a neat sketch.	CO1	PO2	06
UNIT - II					
3	a)	With necessary block diagram, explain how an unknown distance can be measured using beam modulation telemetry technique.	CO2	PO2	10
	b)	Elaborate about the working principle of holography and also write a brief note on holographic computer memory.	CO2	PO2	10
UNIT - III					
4	a)	Classify optical fibers based on modes and refractive index with relevant diagrams.	CO2	PO1	08
	b)	What is intermodal dispersion? Derive a formula for Δt_{\max} , the maximum intermodal dispersion.	CO2	PO2	07
	c)	Explain the types of losses due to scattering in optical fibers.	CO2	PO1	05

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - IV					
5	a)	Discuss the working principle of optimal gyroscope & hence derive an expression for phase shift with the aid of relevant diagram.	CO3	PO1	10
	b)	Discuss the working principle of the following fiber optic sensors: i) Intensity modulated sensors ii) Micro bend sensor	CO3	PO2	10
OR					
6	a)	With the help of neat diagram discuss how Fiber-optics can be used in liquid-level Measurement.	CO3	PO2	10
	b)	Explain the principle of operation of Bragg Gratings (FBG). Sensors. With a neat diagram, explain how FBG sensors are used for strain measurements.	CO3	PO2	10
UNIT - V					
7	a)	With a neat sketch discuss the working of Mach-Zehnder optical fiber interferometer.	CO4	PO2	10
	b)	With an aid of diagram, discuss how temperature is measured using Michelson interferometer.	CO4	PO2	10
