

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Electronics and Instrumentation Engineering

Duration: 3 hrs.

Course Code: 23EI3PCSMT

Max Marks: 100

Course: Sensors and Measurement Techniques

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	MODULE - I			<i>CO</i>	<i>PO</i>	Marks
	1	a)	Define static error. Discuss the various types of static errors that can occur in a measurement system.	<i>CO1</i>	<i>PO2</i>	06
		b)	A thermometer with a measurement range up to 100°C has a possible error of $\pm 0.5^{\circ}\text{C}$. If a temperature reading is 75°C , determine the limited error as a percentage.	<i>CO2</i>	<i>PO3</i>	04
		c)	Discuss the first order and second order systems behavior with appropriate equations.	<i>CO1</i>	<i>PO2</i>	10
			OR			
	2	a)	Explain the following dynamic characteristics with examples: <ul style="list-style-type: none"> • Speed of Response • Lag • Fidelity • Dynamic Error 	<i>CO1</i>	<i>PO2</i>	06
		b)	Suppose 1.414 is used as an approximately to $\sqrt{2}$. Find the absolute, relative and percentage errors.	<i>CO2</i>	<i>PO3</i>	04
		c)	Define measurement system and explain its various elements with a neat block diagram.	<i>CO1</i>	<i>PO2</i>	10
			MODULE - II			
3	a)	Explain the working principle of a Hall effect sensor in liquid level sensing applications.	<i>CO3</i>	<i>PO2</i>	08	
	b)	Describe the construction and operation of an LVDT sensor. Also, list its advantages.	<i>CO3</i>	<i>PO2</i>	08	
	c)	What is the piezoelectric effect? Discuss its applications in detail.	<i>CO3</i>	<i>PO2</i>	04	

		OR			
4	a)	Enumerate and explain any five characteristics of an accelerometer.	CO3	PO2	05
	b)	Explain the Peltier effect and its significance in thermoelectric cooling.	CO3	PO2	07
	c)	Define the Seebeck effect. Explain how the difference in electron energies between two materials leads to a thermoelectric voltage.	CO4	PO2	08
MODULE - III					
5	a)	Describe the construction and operation of a fiber-optic microphone. How does it utilize the properties of optical fibers for sound detection?	CO4	PO2	10
	b)	Define the following terms as applied to an air-water vapor mixture: <ul style="list-style-type: none"> i. Absolute humidity ii. Relative humidity iii. Dewpoint temperature 	CO2	PO1	03
	c)	Explain how thermal conductivity of gas is used for measuring humidity.	CO4	PO2	07
OR					
6	a)	What are Hygrometers and With a neat diagram, discuss the working principle of optical hygrometers.	CO3	PO2	10
	b)	Explain the working principle of scintillation detectors. How do they detect ionizing radiation?	CO4	PO2	10
MODULE - IV					
7	a)	Describe the mechanism of pyroelectricity in crystals. How does a change in temperature lead to the generation of an electric charge?	CO4	PO2	10
	b)	Explain the three main thermoelectric laws. Discuss how each law works and provide examples of their applications in thermoelectric devices and systems.	CO3	PO2	10
OR					
8	a)	Discuss how the resistance of a PTC thermistor increases as the temperature rises. What is the physical phenomenon responsible for this characteristic?	CO4	PO2	08
	b)	Discuss the working principle of the following types of optical temperature sensors. <ul style="list-style-type: none"> i. Fluoroptic Sensor ii. Interferometric Sensor 	CO3	PO2	12

MODULE - V					
	9	a)	List and explain the key factors to consider when selecting a driver for an electronic system.	CO5	PO2 06
		b)	What is four-wire transmission, and how does it differ from two-wire transmission systems? Explain its basic working principle.	CO5	PO2 10
		c)	Write a note on Signal conditioners.	CO5	PO2 04
OR					
	10	a)	Discuss the different types of excitation circuits used for sensors.	CO5	PO2 06
		b)	Describe various shielding techniques helps in reducing noise in sensor systems and circuits.	CO5	PO2 10
		c)	Write a note on Batteries for Low-Power Sensors.	CO5	PO2 04

B.M.S.C.E. - ODD SEM 2024-25