

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Electronics and Instrumentation Engineering

Duration: 3 hrs.

Course Code: 23EI3PCSMT

Max Marks: 100

Course: Sensors and Measurement Techniques

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Enumerate the advantages of Electronic instruments over mechanical and electrical instruments	<i>CO1</i>	<i>PO1</i>	05
	b)	A 0-150 V voltmeter has a guaranteed accuracy of 1 percent of full scale reading. The voltage measured by this instrument is 75 V. Calculate the limiting error in percent.	<i>CO1</i>	<i>PO1</i> <i>PO3</i>	05
	c)	With the help of well-labeled diagrams representing the voltages and currents in the balanced bridge at steady-state, derive the expression for unknown parameters of Maxwell Inductance Capacitance Bridge.	<i>CO1</i>	<i>PO1</i> <i>PO2</i>	10
UNIT - II					
2	a)	Explain the working of Pyro-electric sensor and justify how a change in temperature (heating or cooling) leads to the generation of a voltage with relevant figures.	<i>CO1</i> <i>CO2</i>	<i>PO1</i> <i>PO2</i>	08
	b)	Describe how hygristors can be used to measure humidity with the suitable diagrams	<i>CO2</i> <i>CO3</i>	<i>PO1</i>	06
	c)	Derive the voltage developed between electrodes in piezoelectric sensor formed by applying electrodes to a polled crystalline material	<i>CO2</i> <i>CO3</i>	<i>PO1</i> <i>PO3</i>	06
OR					
3	a)	Derive the output equation of the capacitor working as a water level sensor. Explain the related concept and give the sensor capacitance with relevant sketches.	<i>CO1</i>	<i>PO1</i>	07
	b)	With a neat circuit diagram, explain the principle behind the working of the LVDT sensor.	<i>CO3</i>	<i>PO1</i> <i>PO2</i>	07

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Describe the basic principle of an optical liquid level detector that utilizes the change in refractive index	CO3 CO4	PO1	06
		UNIT - III			
4	a)	Explain how a fiber-optic interferometric microphone translates the movement of the copper diaphragm into a change in light intensity	CO3 CO4	PO1 PO5	08
	b)	Chilled-mirror dew-point sensor with an optical bridge is considered as accurate method of measurement. Justify the statement with suitable diagram.	CO3	PO1 PO2	08
	c)	Explain how microphones are different from hydrophones	CO4	PO1	04
		OR			
5	a)	Enumerate the advantages of semiconductor materials for radiation detection	CO3 CO4	PO1	05
	b)	Describe the concept and purpose of a lithium-drifted detector with suitable diagram	CO3	PO1 PO3	07
	c)	Describe the overall process of how the PhotoMultiplier Tube (PMT) amplifies the weak light signal from the scintillator into a measurable electrical current.	CO5	PO1	08
		UNIT - IV			
6	a)	Explain the general structures of contact and non-contact type temperature sensors with diagrams	CO5	PO1	06
	b)	Suggest the correct connection of a thermocouple to an electronic circuit comprising of a semiconductor reference sensor (LM35DZ).	CO5 CO6	PO1	08
	c)	Describe the method of Fluoroptic method of temperature measurement with relevant diagrams.	CO5	PO1	06
		UNIT - V			
7	a)	Explain the concept of electrical guarding, including the driven shield method. How does this approach reduce leakage current reaching the input terminal?	CO5 CO6	PO1 PO2	06
	b)	Explain the two-wire 20-mA analog data transmission with diagram.	CO6	PO1	06
	c)	What is the purpose of an interface circuit and why is it needed between a sensor and a processing device?	CO5 CO6	PO1 PO5	08
