

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

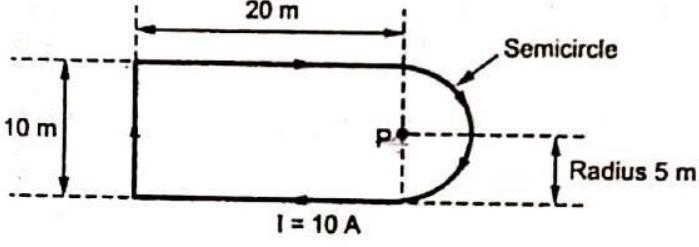
Programme: B.E.

Semester: IV

Branch: Electronics and Instrumentation Engineering

Duration: 3 hrs.

Course Code: 19EI4PCEMF


Max Marks: 100

Course: Electro Magnetic Field Theory

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	State and explain Divergence theorem.	<i>CO1</i>	<i>PO1</i>	06
	b)	Derive the expression for Electric Field Intensity due to infinite line charge lying on z-axis.	<i>CO1</i>	<i>PO1</i>	08
	c)	A charge $Q_1 = -20\mu\text{C}$ is located at $P(-6, 4, 6)$ and charge $Q_2 = 50\mu\text{C}$ is located at $R(5,8,-2)$ in a free space. Find the force exerted on Q_2 by Q_1 in a vector form. The distances given are in meters.	<i>CO1</i>	<i>PO1</i>	06
OR					
2	a)	State and explain Coulomb's Law.	<i>CO1</i>	<i>PO1</i>	06
	b)	Derive the expression for Electric Field Intensity at a point due to an infinite sheet charge lying on XY plane using Gauss Law.	<i>CO1</i>	<i>PO1</i>	08
	c)	Find the divergence of \bar{A} at point $P(5, \pi/2, 1)$ where $\bar{A} = r\sin\theta\bar{a}_r + 3rz^2\cos\theta\bar{a}_\theta$	<i>CO1</i>	<i>PO1</i>	06
UNIT - II					
3	a)	Develop the relation of the Electric field intensity and Electric flux density at boundary conditions between conductor and free space of infinite extent.	<i>CO2</i>	<i>PO2</i>	10
	b)	A point charge of 6nC is located at origin in free space. Evaluate the potential at point P located at $(0.2, -0.4, 0.4)$ if, (i) $V = 0$ at infinite, ii) $V = 0$ at $(1, 0, 0)$, iii) $V = 20\text{V}$ at $P(-0.5, 1, -1)$.	<i>CO2</i>	<i>PO2</i>	10
OR					
4	a)	Analyze the relation of the Electric field intensity and Electric flux density at boundary conditions between two perfect dielectrics with different permittivity.	<i>CO2</i>	<i>PO2</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Determine whether the given potential fields are satisfy the Laplace's equation i) $V = x^2 - y^2 + z^2$ and ii) $V = r\cos\theta + z$	CO2	PO2	10
		UNIT - III			
5	a)	State and explain Biot-Savart Law.	CO3	PO1	06
	b)	A current filament carries a current of a 10A in the \bar{a}_z direction on the z-axis. Find the magnetic field intensity \bar{H} at point P(1,2,3) due to this filament if its extends from a) $z = -\infty$ to ∞ , b) $z = 0$ to 5m and c) $z = 5$ to ∞ .	CO3	PO2	10
	c)	Find the curl of a vector \bar{H} for the given current equation $\bar{H} = [y \cos(ax)]\bar{a}_x + (y + e^x)\bar{a}_z$.	CO3	PO2	04
		OR			
6	a)	State and explain Ampere's circuital law	CO3	PO1	06
	b)	Find the Magnetic field intensity and Magnetic flux density at the point P for the circuit shown in below figure.	CO3	PO2	10
	c)	Describe briefly on different types of Magnetic materials.	CO3	PO1	04
		UNIT - IV			
7	a)	Analyze and develop an expression for displacement current and displacement density and important conclusion.	CO4	PO2	10
	b)	Write the Maxwell's equation for free space in point form and integral form.	CO4	PO2	06
	c)	List the difference between field theory and circuit theory.	CO4	PO2	04
		OR			
8	a)	Develop an expression for Maxwell's equations in differential form and integral form for time varying fields using Faraday's, Ampere's circuit and Gauss law.	CO4	PO2	10
	b)	State and explain Lenz's Law.	CO4	PO2	05
	c)	Write the Maxwell's equation for good conductor in point form and integral form.	CO4	PO2	05
		UNIT - V			
9	a)	Describe the terms EMI and EMC.	CO4	PO6 PO7	06

		b)	Discuss the Biological effects of Electromagnetic radiations	CO4	PO6 PO7	08
		c)	What are sources of intra system and inter system EMI causes. Explain them in details.	CO4	PO6 PO7	06
			OR			
	10	a)	Explain the different sources of EMI.	CO4	PO6 PO7	06
		b)	Discuss the common methods to employed for controlling EMI	CO4	PO6 PO7	08
		c)	Describe the standards of EMC.	CO4	PO6 PO7	06

B.M.S.C.E. - EVEN SEM 2024-25