

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Supplementary Examinations

Programme: B.E.

Branch: Electronics and Instrumentation Engineering

Course Code: 19EI4PCEMF

Course: Electro Magnetic Field Theory

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Date: 15.09.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1	a)	Given point P (-2,6,3) and vector $\mathbf{A} = y \mathbf{a}_x + (x+z) \mathbf{a}_y$ in rectangular co-ordinate system, express P and A in cylindrical systems. 04
	b)	Define Electric Field at a point and derive an expression for the same due to infinite line of charge lying on z-axis. 08
	c)	Evaluate both sides of Divergence theorem if $D = 5\frac{r^2}{4}a_r$ c/m ² for the volume enclosed by $r=4$ m and $\theta=\frac{\pi}{4}$. 08

UNIT - II

2	a)	Two-point charges $-4\mu\text{C}$ and $5\mu\text{C}$ are located at $(2, -1, 3)$ and $(0, 4, -2)$. Find the potential at $(1, 0, 1)$ assuming zero potential at infinity. 06
	b)	Derive the boundary conditions at interfaces between conductor and free space. 10
	c)	Establish relation between electric field intensity and gradient of potential. 04

OR

3	a)	Determine whether the following potentials satisfy Laplace's equation. 06 $V = 2x^2 - 4y^2 + z^2$
	b)	Derive the expression of capacitance by considering composite parallel plate. 06
	c)	Potential field given by $V = 150(x^2 - y^2)$. The point P $(4, -2, 1)$ lies on the boundary of conductor and free space. At point P obtain magnitudes of V, E, E_N , D and E_{tan} . 08

UNIT - III

4	a)	State and Explain Biot Savart's Law 06
	b)	A current Filament Carries a current of 10A in a_z direction on Z axis. Find the magnetic field Intensity H at point P $(1, 2, 3)$ due to this filament if it extends from $z=-\infty$ to $+\infty$ 08
	c)	At a point P(x, y, z), components of the vector magnetic potential A are given as $A_x = 4x + 3y + 2z$, $A_y = 5x + 6y + 3z$ and $A_z = 2x + 3y + 5z$. Determine B at Point P. 06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

OR

5 a) Discuss the boundary conditions at the interface between two media of different permeabilities. **06**

b) Calculate Magnetic field intensity and Magnetic flux density at a point $P(1,2,3)$ due to current carrying element of $5A$ in the a_z direction if i) $z=0$ to $5m$ and ii) $z=5$ to ∞ . **08**

c) A coil has a self-inductance of 1 henry and a resistance of 40 ohms. If it is connected to a 4 -volt DC supply, find the energy stored in the magnetic field when the current has attained its steady value. **06**

UNIT - IV

6 a) List Maxwell's equation in differential form and integral form for time varying fields. **10**

b) Derive the expression for displacement current density and explain its physical significance. **10**

UNIT - V

7 a) Explain different sources of EMI. **06**

b) Discuss briefly different control methods of EMI. **07**

c) Explain health hazards of EMI and EMR. **07**
