

B.M.S. College of Engineering, Bengaluru-560019

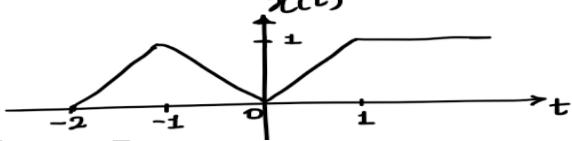
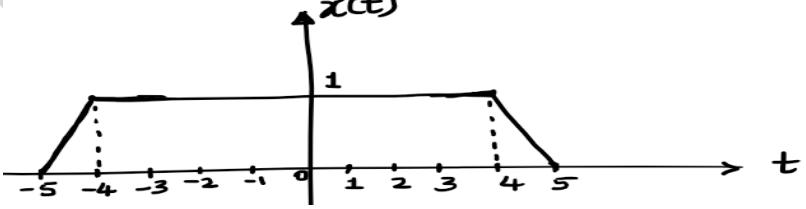
Autonomous Institute Affiliated to VTU

September / October 2023 Semester End Main Examinations

Programme: B.E.

Branch: Electronics and Instrumentation Engineering

Course Code: 22EI4PCSAS



Course: Signals and Systems

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

MODULE - I			CO	PO	Marks
1	a)	<p>Determine whether the following discrete time signals are periodic or not. If periodic, find its fundamental period.</p> <p>i) $x(n) = \cos\left(\frac{\pi}{2}n\right) - \sin\left(\frac{\pi}{8}n\right) + 3 \cos\left(\frac{\pi}{4}n\right)$</p> <p>ii) $x(t) = 10 \cos(\pi t) \cdot \sin(4\pi t)$</p>	CO2	PO1	07
	b)	<p>Classify each of the following signal as energy signal or power signal or neither of these two</p> <p>i) $x(t) = e^{-at} u(t)$</p> <p>ii) $x[n] = 2e^{j3n}$</p>	CO2	PO1	06
	c)	<p>Sketch the even and odd components of the given signal</p>	CO1	PO1	07
OR					
2	a)	<p>For the trapezoidal pulse shown below find the energy of the signal</p>	CO2	PO1	06
	b)	<p>Sketch the even and odd components of the following signals</p> <p>i) $x[n] = u[n] - u[n - 4]$</p> <p>ii) $x(t) = \begin{cases} t & ; 0 \leq t \leq 1 \\ 2 - t & ; 1 \leq t \leq 2 \end{cases}$</p>	CO2	PO1	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	<p>Find the fundamental period of the given signal</p> <p>i) $x(n) = \cos\left(\frac{\pi}{4}n\right) + \sin\left(\frac{\pi}{8}n\right) - 2\cos\left(\frac{\pi}{2}n\right)$</p> <p>ii) $x(t) = 3\cos\sqrt{2}t + 4\sin 5\sqrt{2}t$</p>	CO2	PO1	06
		MODULE - II			
3	a)	<p>A system consists of several subsystems connected as shown in below fig. Find the operator T relating $x(t)$ to $y(t)$ for the subsystem operators given by</p> <p>$T1: y_1(t) = x_1(t) x_1(t - 1)$ $T2: y_2(t) = x_2(t)$ $T3: y_3(t) = 1 + 2x_3(t)$ $T4: y_4(t) = \cos(x_4(t))$</p>	CO1	PO1	06
	b)	<p>For the following systems, determine whether the system is Linear, Time-Invariant, Memoryless, Causal and Stable.</p> <p>i) $y(t) = t^2 \cdot x(t - 1)$ ii) $y(n) = n \cdot x^2(n)$</p>	CO1	PO1	10
	c)	<p>Check whether the given systems is invertible? If invertible then finds its inverse.</p> <p>i) $y(t) = x(2t)$ ii) $y[n] = x[\frac{n}{n_0}]$ where n_0 is an integer</p>	CO2	PO1	04
		MODULE - III			
4	a)	<p>Determine the total response for the system described by the difference equation</p> <p>$y(n) - 0.6y(n - 1) = 0.4^n$ & $y(-1) = 10$</p>	CO2	PO2	08
	b)	<p>Represent given equation in Direct form 1 and Direct form 2.</p> $2 \frac{dy}{dt} + \frac{1}{3} \int y(t) dt + 5 y(t) = \frac{dx}{dt} + 6x(t)$	CO2	PO2	05
	c)	<p>The impulse response of the circuit is given as $h(t) = e^{-t} u(t)$. This circuit is excited by an input of $x(t) = e^{-3t} \{u(t) - u(t - 2)\}$. Determine the output of the circuit.</p>	CO4	PO2	07
		OR			

5	a)	For the system given below evaluate the natural, forced and total response. $y(n+2) + 4y(n+1) + 4y(n) = 2^n u(n)$ <p>where, $y(-1) = 0$ and $y(-2) = 1$</p>	CO2	PO2	08
	b)	Determine the output of the LTI system whose input and impulse response are given as follows: $x(n) = b^n u(n)$ and $h(n) = a^n u(n)$: when $a=b$ and $a \neq b$	CO3	PO2	08
	c)	Represent given equation in Direct form 1 and Direct form 2 $\frac{dy(t)}{dt} + 5y(t) = 3x(t)$	CO2	PO2	04
MODULE - IV					
6	a)	State Convolution and Modulation properties of DTFS.	CO1	PO1	04
	b)	Find the DTFT of the signal $x(n) = a^{ n }$ where $ a < 1$	CO2	PO1	06
	c)	Evaluate the DTFS representation for the signal $x[n] = \cos\left(\frac{6\pi}{13}n + \frac{\pi}{6}\right)$ Draw: i) Magnitude Spectrum. ii) Phase Spectrum.	CO3	PO2	10
MODULE - V					
7	a)	Solve the following difference equation using unilateral Z-transform. $y(n) - 1.5y(n-1) + 0.5y(n-2) = x(n) \text{ for } n \geq 0$ with initial conditions $y(-1) = 4, y(-2) = 10$ and $x(n) = \left(\frac{1}{4}\right)^n u(n).$	CO3	PO2	08
	b)	A LTI discrete time system is given by the system function, $H(z) = \frac{3-4z^{-1}}{1-3.5z^{-1}+1.5z^{-2}}$ specify the ROC of $H(z)$ and determine $h(n)$ for the following Conditions. (i) System is stable. (ii) System is Causal.	CO3	PO2	06
	c)	Determine the Z-transform of $x(n) = -u(-n-1) + \left(\frac{1}{2}\right)^n u(n)$ Plot the ROC and pole zero locations.	CO2	PO1	06
