

B.M.S. College of Engineering, Bengaluru-560019

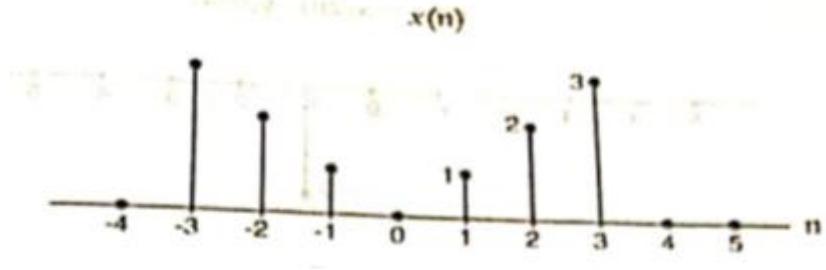
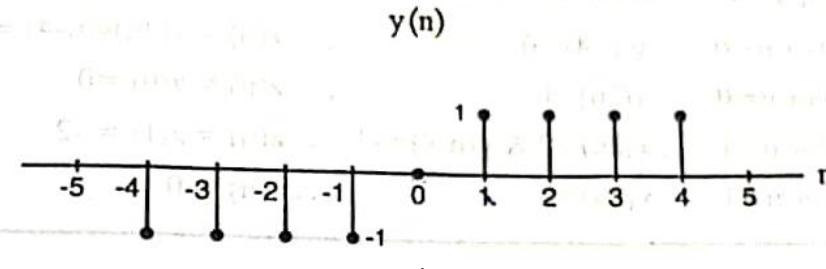
Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

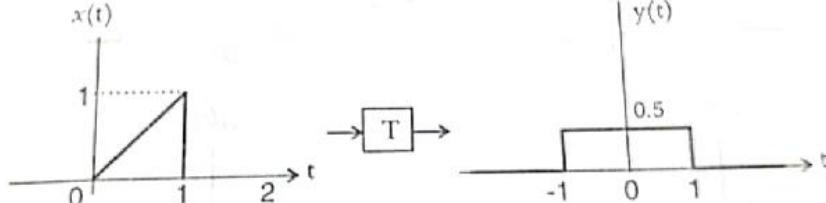
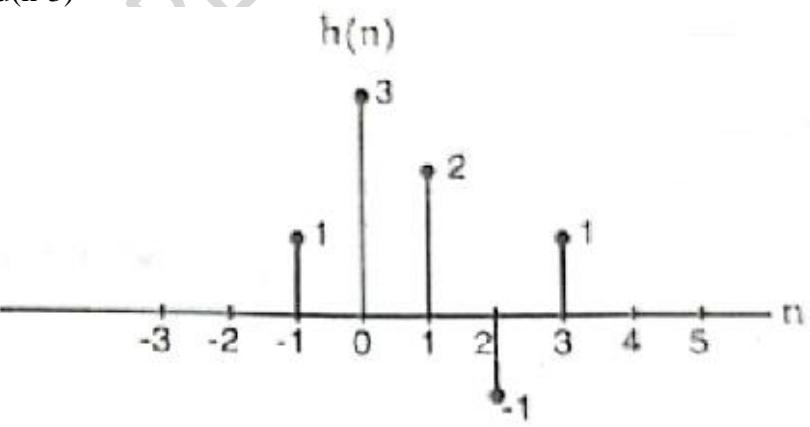
Programme: B.E.

Branch: Electrical and Instrumentation Engineering

Course Code: 22EI4PCSAS



Course: Signals and Systems

Semester: IV



Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Find the even and odd components of the signal, $x(t)=\cos(t) +\sin(t) +\sin(t)\cos(t)$	<i>CO1</i>	<i>PO1</i>	06
	b)	Determine whether the continuous time signal $x(t) = [\cos(2\pi t)]^2$ is periodic or not. If periodic, find the fundamental period T.	<i>CO1</i>	<i>PO1</i>	06
	c)	Sketch the waveform for the following signals: i) $x(t) = u(t) - u(t-2)$ ii) $x(t) = u(t+1) - 2u(t)+u(t-1)$	<i>CO1</i>	<i>PO1</i>	08
OR					
2	a)	For the discrete signals $x(n)$ and $y(n)$ are shown in Fig 2a and Fig 2b respectively. Sketch the signal $z(n) = x(2n) y(n-4)$.	<i>CO1</i>	<i>PO1</i>	06
<p style="text-align: center;"><i>x(n)</i></p> <p style="text-align: center;">Fig 2a</p> <p style="text-align: center;"><i>y(n)</i></p> <p style="text-align: center;">Fig 2b</p>					

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Determine the average power of the sinusoidal signal $x(t) = A \cos(\omega t + \phi)$	CO1	PO1	06
	c)	Distinguish between <ul style="list-style-type: none"> i) periodic and non-periodic signals ii) Deterministic and Random signals 	CO1	PO1	08
UNIT - II					
3	a)	Find the overall operator of a system whose output signal $y(n)$ is given by $y(n) = \frac{1}{3}[x(n) + x(n-1) + x(n-2)]$. Also draw the block diagram representation.	CO2	PO2	06
	b)	For the following system, determine whether the system is Linear, time-invariant, memory less, causal and stable. <ul style="list-style-type: none"> i) $y_1(n) = n x(n)$ ii) $y_2(n) = x(2n)$ 	CO2	PO1	10
	c)	A system 'T' has its input-output pairs given in Fig. 3c. Determine whether the system could be memoryless and causal. 	CO2	PO2	04
UNIT - III					
4	a)	A discrete-time LTI system has impulse response $h(n)$ as shown in Fig 4a. Using linearity and time invariance property, determine the system output $y(n)$ if the input $x(n)$ is, $x(n) = u(n) - u(n-3)$ 	CO3	PO2	10
	b)	Determine the forced response for the system given by, $5 \frac{dy(t)}{dt} + 10y(t) = 2x(t)$ with input $x(t) = e^{-t} u(t)$	CO2	PO2	10
OR					
5	a)	Consider a continuous-time LTI system with unit impulse response, $h(t) = u(t)$ and input $x(t) = e^{-at} u(t)$; $a > 0$	CO3	PO2	10

		Find the output $y(t)$ of the system.			
	b)	By converting the differential equation to integral equation, draw direct form I and direct form II implementation for the given system: $\frac{dy(t)}{dx} + 5y(t) = 3x(t)$.	CO3	PO2	10
		UNIT - IV			
6	a)	Compute the DTFT of the signal, i. $x(n) = (-1)^n u(n)$ ii. $x(n) = \left(\frac{1}{2}\right)^n u(n-4)$	CO4	PO2	08
	b)	Obtain the frequency response of a continuous-time LTI system whose impulse response is given by $h(t) = e^{- t }$	CO4	PO2	06
	c)	Specify the Nyquist rate for each of the following signals: i) $x_1(t) = \text{sinc}(200t)$ ii) $x_2(t) = \text{sinc}^2(200t)$	CO4	PO2	06
		UNIT - V			
7	a)	Design a causal discrete-time LTI system with a property that if the input is $x(n) = (\frac{1}{2})^n u(n) - \frac{1}{4} (\frac{1}{2})^{n-1} u(n-1)$, then the output is $y(n) = (\frac{1}{3})^n u(n)$. Determine the impulse response $h(n)$ and the system function $H(z)$ of the system that satisfies this condition.	CO4	PO3	10
	b)	Find the unilateral Z-transform for the following signals: i) $x(n) = a^n u(n)$ ii) $y(n) = x(n-2)$, where $x(n) = a^n$	CO4	PO2	10
