

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

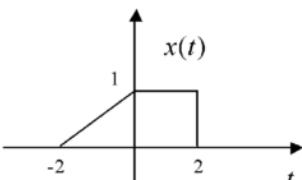
Autonomous Institute Affiliated to VTU

February 2025 Semester End Main Examinations

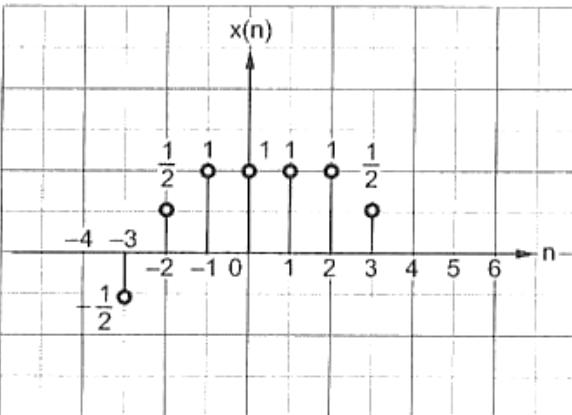
Programme: B.E.

Semester: IV

Branch: Electronics and Instrumentation Engineering


Duration: 3 hrs.

Course Code: 22EI4PCSAS


Max Marks: 100

Course: Signals and Systems

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	<p>Determine whether the signals are energy or power signal and calculate their energy or power.</p> <p>(i) $x(n) = \left(\frac{1}{2}\right)^n u(n)$</p> <p>(ii) $x(t) = \text{rect}\left(\frac{t}{T_0}\right)$</p>	CO1	PO1	06
	b)	<p>For the signal $x(t)$ shown in fig.1, find the following</p> <p>(i) $x(0.5t)$ (ii) $x(2t)$ (iii) $x(-t+2)$ (iv) $x(t-3)$ (v) $x(-2t)$</p> <p>fig.1</p>	CO1	PO1	06
	c)	<p>Determine whether the following discrete time signals are periodic; if periodic, give the period.</p> <p>(i) $\text{Cos}(3\pi n)$ (ii) $\text{Sin}(3n)$ (iii) $\text{Sin}(\pi+0.2n)$ (iv) $\text{Cos}\left(\frac{2\pi n}{5}\right) + \text{Cos}\left(\frac{2\pi n}{7}\right)$</p>	CO1	PO1	08
OR					
2	a)	<p>Sketch the even and odd component of the signal $x(t) = e^{\frac{-1}{4}t} u(t)$</p>	CO1	PO1	06
	b)	<p>Determine if the following signals are periodic; if periodic, give the period.</p> <p>i) $x(t) = \cos(4t) + 2\sin(8t)$</p>	CO1	PO1	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		ii) $x(t) = 3\cos(4t) + \sin(\pi t)$ iii) $x(t) = \cos(3\pi t) + 2 \cos(4\pi t)$			
	c)	A discrete time signal $x(n)$ is as shown in fig.2	CO1	PO1	08
		<p>fig.2</p>			
		Sketch the following signals: (i) $x(n-3)$ (ii) $x(3-n)$ (iii) $x(n)u(3-n)$ (iv) $x(2n)$			
		UNIT - II			
3	a)	For each of the systems, state whether the system is linear, shift variant and causal (i) $y(n) = \log[x(n)]$ (ii) $y(n) = e^{x(n)}$	CO2	PO2	06
	b)	Determine whether the following systems are invertible or not, if it is construct the inverse system. (i) $y(t) = 10x(t)$ (ii) $y(t) = x^2(t)$ (iii) $y(t) = \log(x(t))$ (iv) $y(t) = \int_{-\infty}^t x(\tau) d\tau$	CO2	PO2	08
	c)	Find the overall operator of the system whose output signal is given by $y(n) = 1/3[x(n+1) + x(n) + x(n-1)]$. Also, draw the block diagram representation.	CO2	PO2	06
		OR			
4	a)	Determine whether the following systems are linear or not linear, static or dynamic and stable or unstable system. i) $y(t) = 20x(t) + 6$ ii) $\frac{dy(t)}{dt} + 10y(t) = x(t)$	CO2	PO2	08
	b)	Find whether the following systems are invertible or not. i) $y(t) = x^2(t)$ ii) $y(n) = \log [x(n)]$	CO2	PO2	06

	c)	Determine whether the following systems are time shift variant and causal systems. i) $y(n) = x(2n)$ ii) $y(n) = x(-n + 2)$	CO2	PO2	06
		UNIT - III			
5	a)	The impulse response of the LTI system is $h(t)=u(t)$. Determine the output of the system if the input $x(t)=e^{-at} u(t)$, $a>0$.	CO3	PO2	06
	b)	Fine the total response of the system described by the equation $4y(n) + 4y(n+1) + y(n+2) = x(n)$ with an input $x(n) = 4^n u(n)$. Initial condition being $y(-1)=0, y(-2)=1$.	CO2	PO2	10
	c)	Draw the direct form-I and direct form-II structure for the following structure: $\frac{d^3 y(t)}{dt^3} + 2 \frac{d^2 y(t)}{dt^2} + 3y(t) = x(t) + 3 \frac{d^2 x(t)}{dt^2}$	CO3	PO2	04
		OR			
6	a)	The input $x(t)$ and impulse response $h(t)$ of the LTI system are described by $x(t)=e^{-3t} u(t)$ and $h(t)=u(t-1)$. Evaluate the output.	CO3	PO2	06
	b)	A LTI system has the impulse response given by $h(n) = u(n) - u(n-10)$. Determine the output of the system when the input is $x(n) = u(n-2) - u(n-7)$ using the convolution sum. Show the details of your computation. Sketch all the sequence.	CO3	PO2	08
	c)	A difference equation of discrete time system is given below: $y(n) - \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n) + \frac{1}{2}x(n-1)$. Draw direct form-I and direct form-II structure.	CO3	PO2	06
		UNIT - IV			
7	a)	Specify the Nyquist rate for each of the following signals (i) $X_1(t)=\text{Sinc}(200t)$ (ii) $X_2(t)=\text{Sinc}^2(220t)$	CO4	PO2	04
	b)	Evaluate the DTFT of the signal (i) $x(n) = \left(\frac{1}{2}\right)^n u(n-4)$ (ii) $x(n) = -a^n u(-n-1)$	CO4	PO2	08
	c)	The impulse response of a continuous time LTI system is given by $h(t) = \frac{1}{RC} e^{\frac{-t}{RC}} u(t)$. Find the frequency response and plot the magnitude and phase response.	CO4	PO2	08
		OR			

	8	a)	Find the FT of the following signals: i) $x(t) = \cos w_o t$ ii) $x(t) = e^{-a t }$			06
		b)	Obtain the FT of the signal $e^{-at}u(t)$ and plot its magnitude and phase plot.			08
		c)	State and prove the following properties of DTFT: i) Frequency shift ii) Time reversal			06
UNIT - V						
9	a)		Find the Z-transform of $x(n) = \left[3\left(\frac{4}{5}\right)^n - \left(\frac{2}{3}\right)^{2n} \right] u(n)$. Also, find the ROC.	CO4	PO2	06
	b)		Find the inverse Z-transform of $X(z) = \frac{z^2 - 3z}{z^2 + \frac{3}{2}z - 1}$	CO4	PO2	06
	c)		Solve the following difference equation using unilateral Z-transform. $y(n) - \frac{3}{2}y(n-1) + \frac{1}{2}y(n-2) = x(n) ; \text{ for } n \geq 0$ With initial conditions $y(-1)=4$; $y(-2)=10$ and $x(n) = \left(\frac{1}{4}\right)^n u(n)$	CO4	PO2	08
			OR			
10	a)		Given that $y(-1) = 5$ and $y(-2) = 0$, solve the difference equation $y(n) - 3y(n-1) - 4y(n-2) = 0$, $n \geq 0$	CO4	PO2	10
	b)		Find the Z-transform of $x(n) = a^n u(n) + b^n u(-n-1)$	CO4	PO2	05
	c)		Determine the inverse Z-transform of $X(z) = \frac{1}{1-az^{-1}} \text{ ROC: } z > a $	CO4	PO2	05
