

B.M.S. College of Engineering, Bengaluru-560019

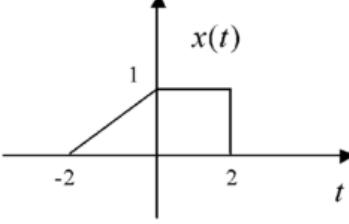
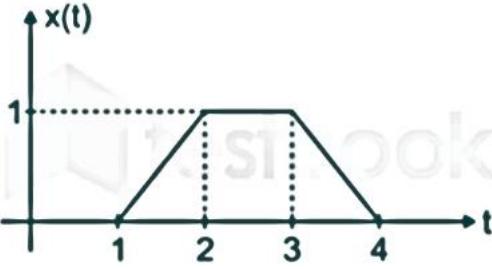
Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Electronics and Instrumentation Engineering



Duration: 3 hrs.

Course Code: 22EI4PCSAS

Max Marks: 100

Course: Signals and Systems

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

MODULE - I			CO	PO	Marks
1	a)	<p>Determine whether the following discrete time signals are periodic or not? If periodic , determine its fundamental period.</p> <p>i) $x(n) = \cos\left(\frac{3\pi n}{5}\right) + \cos\left(\frac{3\pi n}{7}\right)$ ii) $x(n) = \cos\left(\frac{n}{6}\right) \cos\left(\frac{\pi n}{6}\right)$ iii) $x(n) = \cos\left(\frac{2\pi n}{5}\right) + \cos\left(\frac{2\pi n}{7}\right)$ iv) $x(t) = 2 \cos(t) + 7 \sin(\sqrt{3} t)$ v) $x(n) = e^{(j\frac{\pi}{4})n}$</p>	CO2	PO1	10
	b)	<p>Given the signal $x(t)$, sketch the following signals:</p> <p>i) $x(-2t + 2)$ ii) $x(\frac{t}{3} - 3)$</p>	CO2	PO1	05
	c)	<p>Find whether the given signal $x(t)$ is energy or power signal and determine its energy or power.</p>	CO2	PO1	05

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

OR					
2	a)	<p>Find and sketch the even and odd part of the following signals:</p> <p>(i) $x(n) = e^{-\frac{n}{6}} u(n)$</p>	CO2	PO1	08
	(ii)				
	b)	<p>Sketch the following signals:</p> <p>(i) $u(t+2) - 2u(t) + u(t-2)$</p> <p>(ii) $r(t+1) - r(t) + r(t-2)$</p>	CO2	PO2	06
	c)	<p>Given signal $x(n) = \{0,0,0,1,2,3,2,1,0,0,0\}$, plot</p> <p>i) $x(-n-2)$ ii) $x\left(\frac{n}{2}\right)$ iii) $x(2n)$</p>	CO2	PO1	06
MODULE- II					
3	a)	<p>Determine whether the following systems are linear, time invariant and stable:</p> <p>i) $y(t) = x\left(\frac{t}{2}\right)$ ii) $y(n) = nx(n)$ iii) $y(t) = x^2(t)$ iv) $y(t) = e^{x(t)}$</p>	CO2	PO1	12
	b)	<p>Determine whether the following systems are invertible and find their inverse, if they are invertible.</p> <p>i) $Y(t) = x(4t)$ ii) $y(t) = \int_{-\infty}^t x(t). dt$ iii) $Y(n) = x(n+1)$ iv) $Y(t) = 2 x^2(t)$</p>	CO2	PO1	08
		OR			
4	a)	<p>Check whether the following systems are causal and stable:</p> <p>i) $y(t) = t^2 x(t)$ ii) $y(n) = x(n) + x(n-3)$ iii) $y(t) = x(t) \sin(100\pi t)$</p>	CO2	PO1	06

	b)	<p>Check whether the following continuous time systems are time Invariant or time variant.</p> <p>i) $y(t) = \cos x(t)$ ii) $y(t) = tx(t)$ iii) $y(n) = x(-n)$ iv) $y(n) = x(n) - x(n - 1)$ v) $y(t) = x(t^2)$</p>	CO2	PO1	10
	c)	<p>Draw the series and parallel realization for the system whose output signal is given by</p> $y(n) = \frac{5}{6}\{x(n) + x(n - 1) + x(n - 2)\}$	CO1	PO1	04
MODULE - III					
5	a)	<p>The input $x(t)$ and impulse response $h(t)$ of the LTI system are described by $x(t) = e^{-3t}u(t)$ and $h(t) = u(t - 1)$. Evaluate the output.</p>	CO3	PO2	10
	b)	<p>Solve the difference equation of the system defined by</p> $y(n) - \frac{1}{4}y(n-1) - \frac{1}{8}y(n-2) = x(n) + x(n-1); \text{ given that}$ $x(n) = 2^n u(n) \text{ and initial conditions as}$ $y(-1) = 2 \text{ and } y(-2) = -1$	CO3	PO2	10
OR					
6	a)	<p>Consider $x(n) = \{1, 1, 1, 1, 1\}$ and $h(n) = \{1, 1, 1, 2, 2, 2\}$. Compute $y(n) = x(n) * h(n)$</p>	CO3	PO2	08
	b)	<p>The differential equation of the system is given as</p> $\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = x(t); \text{ with } y(0) = 3 \text{ and } y'(0) = -5$ <p>Determine the total response of the system for step input $x(t) = u(t)$</p>	CO3	PO2	07
	c)	<p>Implement the following LTI system in direct form-I and direct form-II block diagram representation.</p> $\frac{d^2y(t)}{dt^2} + 4\frac{dy(t)}{dt} + 6y(t) = 2x(t) + 5\frac{dx(t)}{dt}$	CO3	PO1	05
MODULE - IV					
7	a)	<p>The impulse response of continuous time system is given by $h(t) = \frac{1}{RC} e^{\frac{-t}{RC}} u(t)$. Determine the frequency response and plot its magnitude and phase response.</p>	CO4	PO2	08
	b)	<p>Determine the DTFS representation of $x(n) = \cos\left(\frac{n\pi}{3}\right)$ and plot its spectrum.</p>	CO2	PO1	06
	c)	<p>The differential equation of the system is given as</p> $\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 6y(t) = -\frac{dx(t)}{dt}.$ <p>Determine the impulse response of the system.</p>	CO4	PO2	06

OR					
8	a)	<p>State and prove the following FT properties:</p> <ul style="list-style-type: none"> i) Time shift ii) convolution 	CO1	PO1	06
	b)	<p>The impulse response of the systems is given by $h(t) = e^{-t}u(t) + e^{2t}u(t)$ and the input signal is $x(t) = e^{-2t}u(t)$. Find the output of the system.</p>	CO4	PO2	08
	c)	<p>Find the Fourier transform of the following using appropriate properties:</p> <ul style="list-style-type: none"> i) $x(t) = e^{-3 t } \sin(2t)$ ii) $x(t) = \cos(w_o t)$ 	CO2	PO1	06
MODULE - V					
9	a)	<p>Find the Z-transform and ROC of the following sequences:</p> <ul style="list-style-type: none"> i) $x(n) = a^n \sin(\Omega_o n) u(n)$ ii) $x(n) = n a^n u(n)$ 	CO5	PO1	06
	b)	<p>Find the inverse Z-transform of $X(z) = \frac{z(z^2-4z+5)}{(z-3)(z-1)(z-2)}$ for following ROC:</p> <ul style="list-style-type: none"> i) $Z > 3$ ii) $Z < 1$ iii) $2 < Z < 3$ 	CO5	PO2	08
	c)	<p>Draw the direct form-I and direct form-II implementations of the following equation,</p> $y(n) - \frac{1}{4}y(n-1) - \frac{1}{8}y(n-2) = 2x(n) + 3x(n-1)$	CO5	PO1	06
OR					
10	a)	<p>Solve the following difference equation using unilateral Z-transform:</p> $y(n) + y(n-2) = \delta(n); n \geq 0 \text{ and } y(-2) = 0; y(-1) = 1$	CO5	PO2	06
	b)	<p>Find the inverse Z-transform of the following</p> $X(z) = \frac{1}{1 - 1.5z^{-1} + 0.5z^{-2}}$	CO5	PO2	08
	c)	<p>A difference equation of the system is given below : $y(n) = 0.5y(n-1) + x(n)$. Determine the following:</p> <ul style="list-style-type: none"> i) System function ii) Pole zero plot of the system function iii) unit sample response of the system 	CO5	PO2	06