

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

December 2023 Supplementary Examinations

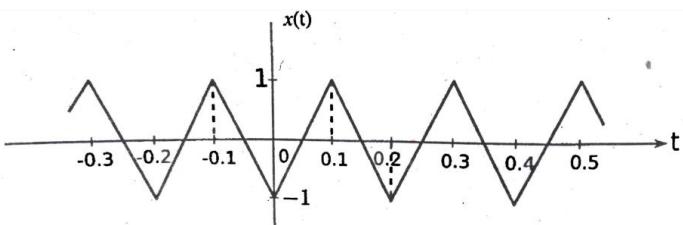
Programme: B.E.

Branch: Electronics and Instrumentation Engineering

Course Code: 22EI4PCSAS

Course: Signals and Systems

Semester: IV


Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

MODULE - I			CO	PO	Marks
1	a)	Discuss the classifications of signals with a neat plots and expressions.	CO1	PO1	08
	b)	For the signal $x(t)$ shown in the Fig.Q1(b), find and plot the following, (i) $x(-2t - 4)$ (ii) $x(-3t + 2)$ (iii) $x\left(-\frac{t}{2} - 4\right)$	CO2	PO2	06
		<p>Fig.Q1(b)</p>			
	c)	Determine whether the continuous -time signal $x(t) = x_1(t) + x_2(t) + x_3(t)$ is periodic or not. If periodic find the fundamental period where $x_1(t)$, $x_2(t)$ and $x_3(t)$ have periods of $\frac{8}{3}$, 1.26 and $\sqrt{2}$ respectively.	CO2	PO2	06
OR					
2	a)	With a neat plot and expressions, describe the following continuous elementary signals (i) Exponential signals (ii) Unit Step function (iii) Unit Ramp function	CO1	PO1	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>Compute the average power of the triangular wave shown in the Fig.Q2(b).</p> <p>Fig.Q2(b)</p>	CO2	PO1	06
	c)	<p>Sketch the following signals,</p> <p>i) $x(t) = -u(t + 3) + 2u(t + 1) - 2u(t - 1) + u(t - 3)$ ii) $x(t) = r(t + 1) - r(t) + r(t - 1)$</p>	CO1	PO1	08
MODULE - II					
3	a)	<p>Determine whether the system $y(t) = e^{x(t)}$ is,</p> <p>(i) Linear ii) Time-Invariant iii) Causal iv) Memory</p>	CO2	PO2	08
	b)	<p>Determine whether the system $y(n) = g(n)x(n)$ is,</p> <p>(i) Linear ii) Time-Invariant iii) Causal iv) Memory</p>	CO2	PO2	08
	c)	<p>Find the overall operator of a system whose output signal is given by $y(n) = \frac{1}{3}[x(n + 1) + x(n) + x(n - 1)]$. Also draw the block diagram representation.</p>	CO1	PO1	04
MODULE - III					
4	a)	<p>Determine the output $y(t)$ of the LTI system having a unit impulse response, $h(t) = u(t)$ and input $x(t) = e^{-at}u(t)$; $a > 0$.</p>	CO3	PO2	08
	b)	<p>Determine the forced response for the system given by the difference equation,</p> $y(n) - \frac{1}{4}y(n - 1) - \frac{1}{8}y(n - 2) = x(n) + x(n - 1)$ <p>with input $x(n) = \left(\frac{1}{8}\right)^n u(n)$</p>	CO3	PO2	08
	c)	<p>Draw the direct form-I implementations for the system,</p> $\frac{d^3y(t)}{dt^3} + 2\frac{dy(t)}{dt} + 3y(t) = x(t) + 3\frac{dx(t)}{dt}.$	CO2	PO2	04
OR					
5	a)	<p>Compute the total response of the system given by the differential equation, $\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 4y(t) = \frac{dx(t)}{dt}$</p> <p>with $y(0) = 0, \frac{dy(t)}{dt} \Big _{t=0} = 1$ and $x(t) = 2e^{-t}u(t)$</p>	CO3	CO2	10

	b)	Compute the convolution sum between the impulse response $h(n) = u(n)$ and the input $x(n) = (2, 1, 2, 0)$.	CO3	PO2	06
	c)	Draw the direct form-II implementations for the system, $\frac{d^3y(t)}{dt^3} + 2\frac{dy(t)}{dt} + 3y(t) = x(t) + 3\frac{dx(t)}{dt}.$	CO2	PO2	04
		MODULE- IV			
6	a)	State and prove the following properties of DTFS: (i) Time Shift ii) Convolution in time	CO3	PO2	06
	b)	Find the DTFT of the signal $x(n) = n \left(\frac{1}{2}\right)^{ n }$ using appropriate properties.	CO3	PO2	06
	c)	The impulse response of a continuous-time LTI system is given by, $h(t) = \frac{1}{RC} e^{-\frac{t}{RC}} u(t)$. Find the frequency response and plot the magnitude and phase response.	CO4	PO2	08
		MODULE - V			
7	a)	Determine the Z-transform of the signal $x(n) = 7 \left(\frac{1}{3}\right)^n u(n) - 6 \left(\frac{1}{2}\right)^n u(n)$. Also sketch the ROC with the pole-zero indication.	CO4	PO2	08
	b)	Compute the unilateral z-transform of $x(n) = \left(\frac{1}{4}\right)^n u(3-n)$	CO4	PO2	06
	c)	Using partial fraction expansion method, obtain the time-domain signal corresponding to the z-transform given by, $X(z) = \frac{Z+1}{3Z^2 - 4Z + 1}; z > 1$	CO4	PO2	06
