

B.M.S. College of Engineering, Bengaluru-560019

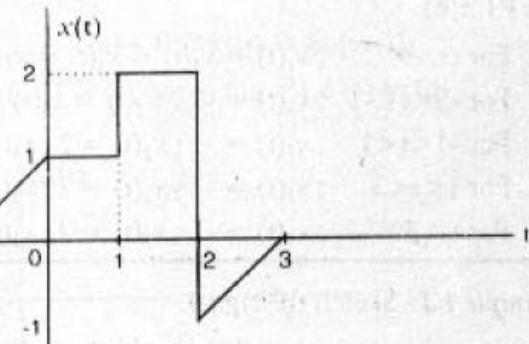
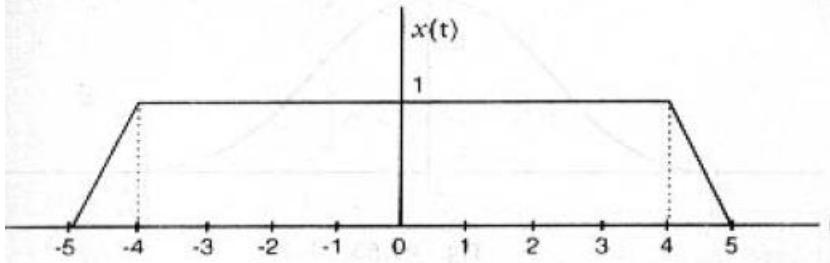
Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Electronics & Instrumentation Engineering



Duration: 3 hrs.

Course Code: 23EI4PCSAS

Max Marks: 100

Course: Signals & Systems

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

MODULE - I			CO	PO	Marks
1	a)	Sketch $y(t) = \{x(t) + x(2-t)\}.u(1-t)$ for the given signal. 	CO1	PO1	06
	b)	Determine whether each of the following signal as energy signal or power signal or neither of these two i) $x(t) = e^{-at} u(t)$ ii) $x[n] = 2e^{j3n}$	CO1	PO1	07
	c)	Determine whether the following discrete time signals are periodic or not. If periodic find its fundamental period. i) $x(n) = \cos\left(\frac{\pi}{2}n\right) - \sin\left(\frac{\pi}{8}n\right) + 3\cos\left(\frac{\pi}{4}n\right)$ ii) $x(t) = 10 \cos(\pi t) \cdot \sin(4\pi t)$	CO1	PO1	07
OR					
2	a)	Differentiate the given signal and verify whether the given signal is energy or power signal and determine its value 	CO1	PO1	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Sketch the even and odd components of the following signals i) $x[n] = u[n] - u[n - 4]$ ii) $x(t) = \begin{cases} t & ; 0 \leq t \leq 1 \\ 2 - t & ; 1 \leq t \leq 2 \end{cases}$	CO1	PO1	07
	c)	Find the fundamental period of the given signal i) $x(n) = \cos\left(\frac{\pi}{4}n\right) + \sin\left(\frac{\pi}{8}n\right) - 2\cos\left(\frac{\pi}{2}n\right)$ ii) $x(t) = 3\cos\sqrt{2}t + 4\sin 5\sqrt{2}t$	CO1	PO1	07
		MODULE - II			
3	a)	A system consists of several subsystems connected as shown in below fig. Find the operator T relating $x(t)$ to $y(t)$ for the subsystem operators given by T1: $y_1(t) = x_1(t) x_1(t - 1)$ T2: $y_2(t) = x_2(t) $ T3: $y_3(t) = 1 + 2x_3(t)$ T4: $y_4(t) = \cos(x_4(t))$	CO2	PO1	06
	b)	For the following systems, determine whether the system is Linear and Time-Invariant? i) $y(t) = t^2 \cdot x(t - 1)$ ii) $y(n) = n \cdot x^2(n)$	CO2	PO1	06
	c)	For the following systems, determine whether the system is Linear, Time-Invariant, Memoryless, Causal and Stable. i) $y(t) = x\left(\frac{t}{2}\right)$ ii) $y(n) = n \cdot x(n)$	CO2	PO1	08
		MODULE - III			
4	a)	Evaluate the continuous time convolution integral for the given equation $y(t) = \{u(t + 2) - u(t - 1)\} * u(-t + 2)$	CO4	PO2	10
	b)	Evaluate the total response for the system described by the difference equation $y(n) + 4y(n - 1) + 4y(n - 2) = 2^n \cdot u(n)$ with $y(-1) = 0$ and $y(-2) = 1$	CO4	PO2	10
		OR			
5	a)	Consider the LTI system with input $x(n) = 0.3^n u(n - 2)$ and unit impulse response $h(n) = u(n)$. Compute the convolution summation.	CO4	PO2	10
	b)	Obtain the total response of the system given by $y''(t) + y(t) = 3x'(t)$ with $y'(0) = -1$; $y(0) = -1$ and $x(t) = 2e^{-t} \cdot u(t)$	CO4	PO2	10

MODULE - IV					
6	a)	Evaluate the DTFS representation for the signal $x(n)$ shown in the figure below sketch the magnitude and phase spectrum and verify the Parseval's identity.	CO3	PO2	10
		$x(n)$ 			
	b)	<p>Consider a discrete time LTI system described by</p> $y(n) - 0.5 y(n - 1) = x(n) + 0.5x(n - 1)$ <p>Evaluate the frequency response and impulse response of the system.</p>	CO3	PO2	05
	c)	<p>Determine the Nyquist rate for the following signals:</p> <ol style="list-style-type: none"> $x(t) = \cos(150\pi t) \cdot \sin(100\pi t)$ $x(t) = \cos^3(200\pi t)$ 	CO3	PO2	05
MODULE - V					
7	a)	<p>A LTI discrete time system is given by the system function</p> $H(z) = \frac{3 - 4z^{-1}}{1 - 3.5z^{-1} + 1.5z^{-2}}$ <p>Specify the ROC of $H(z)$ and determine $h(n)$ for the following conditions. Check if system is Stable and Causal.</p>	CO2	PO2	06
	b)	<p>Solve the following difference equation using unilateral Z-transform.</p> $y(n) - 1.5y(n - 1) + 0.5y(n - 2) = x(n) \text{ for } n \geq 0$ <p>with initial conditions</p> $y(-1) = 4, y(-2) = 10 \text{ and } x(n) = \left(\frac{1}{4}\right)^n u(n).$	CO2	PO2	08
	c)	<p>Sketch the direct form 1 and direct form 2 for the given difference equation</p> $y(n) = -0.5y(n - 1) + 0.2y(n - 2) + 3x(n) + 0.6x(n - 2)$	CO2	PO1	06
