

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

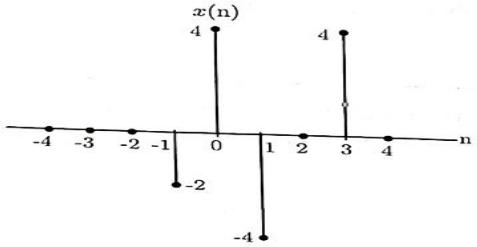
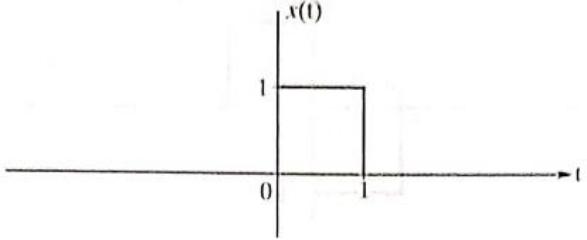
Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

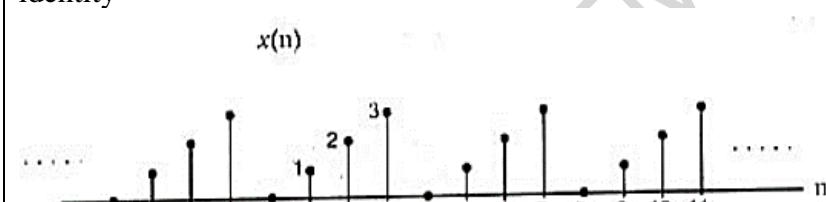
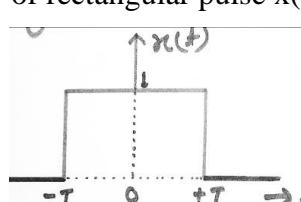
Semester: IV

Branch: Electronics & Instrumentation Engineering



Duration: 3 hrs.

Course Code: 23EI4PCSAS

Max Marks: 100



Course: Signals and Systems

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Describe the elementary signals with appropriate equations and plots.	CO2	PO1	10
	b)	For the discrete time signal shown below, Sketch the following signal. i) $2x(n-2)$ ii) $3-x(n)$ iii) $2x(-n)-4$ iv) $1+2x(-2+n)$	CO2	PO1	10
OR					
2	a)	Classify different types of signals with necessary plots and equations.	CO1	-	10
	b)	Analyze the given signal and Sketch the even and odd parts of the signal i) $x(n)=\{2,3,4,5,6\}$; Consider origin at 4 ii) 	CO2	PO2	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - II					
3	a)	<p>For the following systems, determine whether the system is Linear, Time invariant, Memoryless, Causal and Stable</p> <p>i) $y(t) = \frac{d}{dt} \{e^{-t} x(t)\}$</p> <p>ii) $y(t) = x(\frac{t}{2})$</p> <p>iii) $y(n) = x(n) \sum_{-\infty}^{\infty} \delta(n - 2k)$</p> <p>iv) $y(n) = x(n) + nx(n + 1)$</p>	<i>CO2</i>	<i>PO1</i>	10
	b)	<p>Determine whether the following systems are invertible or not, if it is construct the inverse system.</p> <p>i. $y(n) = n x(n)$</p> <p>ii. $y(t) = x^3(t)$</p> <p>iii. $y(t) = \frac{6}{5}x(-3 - t)$</p> <p>iv. $y(t) = \int_{-\infty}^t x(\tau).d\tau$</p> <p>v. $y(t) = x\left(\frac{t}{4}\right)$</p>	<i>CO2</i>	<i>PO1</i>	10
		OR			
4	a)	<p>For the following systems, determine whether the system is Linear, Time invariant, Memoryless, Causal and Stable</p> <p>i) $y(t) = \frac{dx(t)}{dt}$</p> <p>ii) $y(t) = e^{x(t)}$</p> <p>iii) $y(n) = \cos(x(t))$</p> <p>iv) $y(n) = x(n) + u(n + 1)$</p>	<i>CO2</i>	<i>PO1</i>	10
	b)	<p>For the following systems, determine whether the system is Invertible or not? If invertible construct inverse system</p> <p>i) $y(t) = x(t - 6)$</p> <p>ii) $y(t) = x(1 - n)$</p>	<i>CO2</i>	<i>PO1</i>	06
	c)	<p>Determine the overall operator of the following systems whose output signal is given by and also represent the block diagram</p> <p>$y(n) = 0.3[x(n) + x(n - 1) + x(n - 2)]$</p>	<i>CO2</i>	<i>PO1</i>	04
		UNIT - III			
5	a)	<p>Design the total response of the system given by the following differential equation</p> $\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = 2x(t)$ $y(0) = 0; \frac{dy(t)}{dt} = 1; \text{ for } t = 0$ $x(t) = \cos t u(t)$	<i>CO3</i>	<i>PO2</i>	10
	b)	<p>Evaluate the continuous -time convolution integral given below</p> <p>$y(t) = \{u(t + 2) - u(t - 1)\} * u(-t + 2);$</p>	<i>CO4</i>	<i>PO1</i>	10

OR					
6	a)	Design the force response described by the following difference equation $y(n) - 0.25y(n-1) - 0.125y(n-2) = x(n) + x(n-1)$ with input $x(n) = 0.125^n u(n)$	CO3	PO2	10
	b)	Draw the direct form-I and Direct form-II implementation for the system defined by the following differential equation: $\frac{d^2y(t)}{dt^2} - 6\frac{dy(t)}{dt} - 4y(t) = x(t) - 5\frac{dx(t)}{dt}$	CO4	PO1	06
	c)	Perform the convolution sum of the sequences given below: $x(n)=\{1,2,3,1\}$ and $h(n)=\{1,2,1,-1\}$	CO4	PO1	04
UNIT - IV					
7	a)	Evaluate the DTFS representation for the signal $x(n)$ as shown below figure(7a) and sketch the spectra. Also verify Parseval's identity	CO4	PO1	10
		 figure(7a)			
	b)	The system produces the output of $y(t) = e^{-t}u(t)$ for an input of $x(t) = e^{-2t}u(t)$. Determine the frequency response and impulse response of the system.	CO4	PO1	10
OR					
8	a)	Evaluate the Fourier transform of the following signal. Obtain the expression for the magnitude and phase spectra. i) $x(t) = (e)^{-3t}u(t-1)$ ii) $x(t) = t(e)^{-2t}u(t)$	CO4	PO1	10
	b)	Find the DTFS of $x(n) = \cos(6\frac{\pi}{13}n + \frac{\pi}{6})$. Also plot its magnitude and phase spectra.	CO1	-	06
	c)	Find the CTFT of rectangular pulse $x(t)$ shown below figure(8a):			04
		 figure(8a)			

UNIT - V						
	9	a)	Analyze the following signals using Z-transform technique of the and determine the ROC i) $y(n) = \left(\frac{1}{3}\right)^n u(n) - \left(\frac{1}{2}\right)^n u(-n-1)$ ii) $y(n) = (a)^n \cos(wn) u(n)$	CO5	PO2	10
		b)	Explain the properties of ROC	CO1	-	04
		c)	Determine the discrete-time sequence $x(n)$ which has Z-transform $X(Z) = \frac{1+5z^{-1}}{1-1.5z^{-1}+0.5z^{-2}}$ $ROC: Z > 1$	CO5	PO2	06
			OR			
	10	a)	Analyze the given causal LTI system described by the difference equation $y(n) = y(n-1) + y(n-2) + x(n-1)$ i) Find the system function $H(Z)$. ii) Plot the poles and zeros iii) Indicate the ROC.	CO5	PO2	08
		b)	Determine the system function and unit sample response of the system using unilateral z-transform. $y(n) - \frac{1}{2}y(n-1) = 2x(n); y(-1) = 0$	CO5	PO1	06
		c)	Applying z-transforms, solve the following difference equation $y(n) + 3y(n-1) = x(n)$ where $x(n) = u(n)$, $y(-1) = 1$	CO5	PO1	06
