

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Semester: IV

Branch: Electronics and Instrumentation Engineering

Duration: 3 hrs.

Course Code: 23EI4PCSAS

Max Marks: 100

Course: Signals and Systems

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

MODULE - I			CO	PO	Marks
1	a)	For the continuous-time signal $x(t)$ shown in fig1a. sketch the signal $y(t) = x(3t) + x(3t+2)$	CO1	PO3	06
		<p>Fig1a</p>			
	b)	Determine the odd and even components of the signal, $x(t) = \cos(t) + \sin(t) + \sin(t)\cos(t)$	CO1	PO3	05
	c)	<p>Determine whether each of the following signals is periodic. If a signal is periodic, determine its fundamental period.</p> <p>i) $x(n) = 5\cos(0.2\pi n)$ ii) $x(n) = \sin(2n)$ iii) $x(t) = \cos(\frac{\pi}{3}t) + \sin(\frac{\pi}{4}t)$</p>	CO1	PO3	09
OR					
2	a)	A discrete-time sequence $h(n)$ is shown in Fig 2a. Sketch the signal, $x(n) = h(3n) \cdot \delta(n-1)$	CO1	PO3	06
		Fig2a			

Important Note: Completing your answers, ... draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>A discrete-time signal $x(n)$ is described by</p> $x(n) = \begin{cases} 1, & n = 1, 2, 3 \\ -1, & n = -1, -2, -3 \\ 0 & n = 0, n > 3 \end{cases}$ <p>Find $y(n) = x(2n + 2)$.</p>	CO1	PO3	06
	c)	<p>Determine the average power and the energy of the following sequences.</p> <p>i. $x_1(n) = nu(n)$ ii. $x_2(n) = A_0 e^{j\Omega_0 n}$</p>	CO1	PO3	08
MODULE - II					
3	a)	<p>For the following system, $T\{x(n)\} = x(n) + u(n+1)$ determine whether the system is</p> <p>i. Linear ii. Time-invariant iii. Memoryless iv. Causal v. Stable</p>	CO2	PO2	10
	b)	<p>Find the overall operator of a system whose output signal $y(n)$ is given by</p> $y(n) = \frac{1}{3}[x(n+1) + x(n) + x(n-1)]$ <p>Also draw the block diagram representation.</p>	CO2	PO3	05
	c)	<p>Determine whether the following systems invertible. If it is invertible construct the inverse system. If it is not, find two input signals that give the same output.</p> <p>i. $y(t) = x(t-2)$ ii. $y(n) = nx[n]$</p>	CO2	PO3	05
MODULE - III					
4	a)	<p>An LTI system is characterized by an impulse response $h(n) = \left(\frac{3}{4}\right)^n u(n)$. Find the step response of the system.</p>	CO3	PO3	06
	b)	<p>Convolute the two continuous-time signals $x_1(t)$ and $x_2(t)$ given below.</p> $x_1(t) = \cos\pi t[u(t+1) - u(t-3)]$ $x_2(t) = u(t)$	CO3	PO3	08
	c)	<p>Find the natural response for the system described by the differential equation,</p> $5 \frac{dy(t)}{dx} + 10y(t) = 2x(t) \quad : y(0) = 3$	CO3	PO3	06
OR					
5	a)	<p>Evaluate the step response of an LTI system represented by the impulse response, $h(n) = (\frac{1}{2})^n u(n)$</p>	CO3	PO3	06
	b)	<p>Solve the differential equation</p> $\frac{d^2y(t)}{dt^2} + 5 \frac{dy(t)}{dt} + 4y(t) = \frac{d}{dt}x(t)$ <p>The initial conditions are $y(0) = 0$ and $y'(0) = 1$. The forcing equation $x(t) = e^{-2t} u(t)$.</p>	CO3	PO3	08
	c)	<p>Compute the convolution sum of the two sequences, $x_1(n)$ and $x_2(n)$, given below.</p> <p>$x_1(n) = (1, 2, 3)$ and $x_2(n) = (1, 2, 3, 4)$</p>	CO3	PO3	06

MODULE - IV					
6	a)	State and prove the following properties of discrete time Fourier series. i) Linearity property ii) Frequency shift	CO3	PO1	08
	b)	Determine the DTFS representation of $x(n) = \cos(n \frac{\pi}{3})$	CO3	PO2	06
	c)	Find the frequency and impulse response of the system described by the differential equation $\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 6y(t) = -\frac{dx(t)}{dt}$	CO3	PO2	06
MODULE - V					
7	a)	Find the Z-transform of the following discrete-time signals. Also include the ROC for each: i. $x(n) = 2^n u(n) + 3(\frac{1}{2})^n u(n)$ ii. $x(n) = -a^n u(-n-1)$ iii. $x(n) = 2\delta(n-3) - 2\delta(n+3)$	CO2	PO2	09
	b)	Determine the inverse Z-transform of $X(z)$ using partial fraction expansion approach. $X(z) = \frac{z+1}{3z^2 - 4z + 1} \quad \text{ROC: } z > 1$	CO2	PO2	05
	c)	A causal system has input $x(n)$ and output $y(n)$. Find the impulse response of the system if, $x(n) = \delta(n) + \frac{1}{4}\delta(n-1) - \frac{1}{8}\delta(n-2)$ $y(n) = \delta(n) - \frac{3}{4}\delta(n-1)$	CO2	PO3	06
