

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

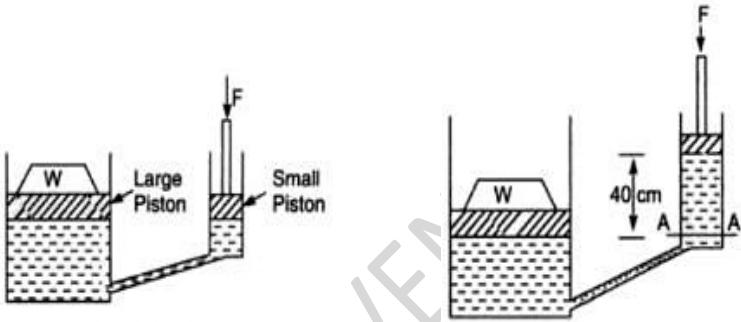
Programme: B.E.

Semester: IV

Branch: Electronics and Instrumentation Engineering

Duration: 3 hrs.

Course Code: 23EI4PCTNI


Max Marks: 100

Course: Transducers and Instrumentation

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

MODULE - I			CO	PO	Marks
1	a)	Differentiate between transducer and sensor with example.	<i>CO1</i>	<i>PO1</i>	05
	b)	Explain Different IO Configurations	<i>CO1</i>	<i>PO1</i>	05
	c)	Illustrate with block diagram, the functional elements of an instrument system.	<i>CO1</i>	<i>PO1</i>	10
MODULE- II					
2	a)	Illustrate the working principles of an Orifice Plate Flow Meter by applying its design features to real-world scenarios.	<i>CO2</i>	<i>PO2</i>	10
	b)	An oil of viscosity 0.5 Ns/m^2 and relative density 0.6 is flowing through a circular pipe of diameter 60 cm and of length 500 m. The average velocity of the oil is 2 m/s. Determine the Reynolds number and state whether the flow is laminar or turbulent	<i>CO2</i>	<i>PO3</i>	05
	c)	Through a refinery, fuel ethanol is flowing in a pipe at a velocity of 1 m/s and a pressure of 101300 Pa. The refinery needs the ethanol to be at a pressure of 2 atm (202600 Pa) on a lower level. How far must the pipe drop in height in order to achieve this pressure? Assume the velocity does not change. The density of ethanol is 789 kg/m^3 and gravity g is 9.8 m/s^2 .	<i>CO2</i>	<i>PO3</i>	05
OR					
3	a)	Explain with the help of a neat diagram the working of an Rotameter and describe its advantages and disadvantages	<i>CO2</i>	<i>PO2</i>	10
	b)	With a neat diagram, Explain the working of an Electromagnetic flow meter	<i>CO2</i>	<i>PO2</i>	10
MODULE- III					
4	a)	PT-100 is a Platinum RTD whose resistance at 0°C is 100ohm. If $3.91 \times 10^{-3}/^\circ\text{C}$ is the resistance temperature co-efficient of Platinum, then find its resistance at 100°C .	<i>CO3</i>	<i>PO3</i>	05

Important Note: Competing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		b)	A thermocouple has a linear sensitivity of 30uv/C, calibrated at a cold junction temperature of 0°C. It is used to measure an unknown temperature with the cold junction temperature of 30°C. Find the actual hot junction temperature if the emf generated is 3.0 mv.	CO3	PO3	05
		c)	Mention the different types of Thermocouple available and explain its characteristics	CO3	PO2	10
MODULE - IV						
5	a)	Explain in detail, with a neat sketch the working of McLeod Vacuum Gauge	CO4	PO2	10	
	b)	The diameters of a small piston and a large piston of a hydraulic jack are 3 cm and 10 cm respectively. A force of 80 N is applied on the small piston. Find the load lifted by the large piston when: (a) the pistons are at the same level. (b) small piston is 40 cm above the large piston. The density of the liquid in the jack is given as 1000 kg/m ³	CO4	PO3	10	
		<p>Figure 5(b)</p>				
		OR				
6	a)	With a neat sketch, Explain the working principle of a dead weight tester	CO4	PO2	10	
	b)	Write a note on Elastic type Pressure Gauges	CO4	PO2	10	
MODULE - V						
7	a)	Detail the step-by-step process of designing a cloud-based home automation system, incorporating a framework that outlines each component's role within the system. What will be the conceptual equation for the application?	CO4	PO3	12	
	b)	What is a IoT? Break down the individual technologies behind the Internet of Things, examining their roles, interdependencies, and how they collectively contribute to the seamless functioning of IoT applications.	CO4	PO3	08	
