

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Semester: IV

Branch: Electronics and Instrumentation Engineering

Duration: 3 hrs.

Course Code: 23EI4PCTNI

Max Marks: 100

Course: Transducers and Instrumentation

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

MODULE - I			CO	PO	Marks
1	a)	Define and differentiate accuracy and precision.	<i>CO1</i>	<i>PO1</i>	05
	b)	Illustrate with block diagram, the functional elements of an instrument system.	<i>CO1</i>	<i>PO1</i>	10
	c)	List the differences between active and passive sensors with example.	<i>CO1</i>	<i>PO1</i>	05
MODULE - II					
2	a)	Show that flow rate is related to the induced emf in electromagnetic flow meter. Also, mention its advantages and applications.	<i>CO2</i>	<i>PO2</i>	10
	b)	Discuss the main features and interactions of the components in a Rotameter, specifically the tapered tube and the float, and how do they contribute to precise flow measurement?	<i>CO2</i>	<i>PO2</i>	10
OR					
3	a)	Apply the design elements of an Orifice Plate Flow Meter to real-world circumstances to demonstrate its operating principles.	<i>CO2</i>	<i>PO2</i>	10
	b)	Apply the principles of energy conservation to arrive at Bernoulli's equation, taking into account the work done by pressure, gravitational forces, and the fluid element's kinetic energy.	<i>CO2</i>	<i>PO2</i>	10
MODULE- III					
4	a)	Describe the operational principles of RTD and Thermistors.	<i>CO3</i>	<i>PO2</i>	10
	b)	List the different types of thermocouples and elucidate its characteristics.	<i>CO3</i>	<i>PO2</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

MODULE - IV						
5	a)	Discuss the measuring principle of Bourdon tube pressure gauge for measuring pressure of a gas or liquid.	<i>CO4</i>	<i>PO2</i>	10	
	b)	Describe with a neat sketch the working of McLeod Vacuum Gauge	<i>CO4</i>	<i>PO2</i>	10	
OR						
6	a)	Mention the different types of elastic pressure gauges. Discuss the working of diaphragm-based pressure measurement	<i>CO4</i>	<i>PO2</i>	10	
	b)	Depict and describe the application of a dead weight tester.	<i>CO4</i>	<i>PO2</i>	10	
MODULE - V						
7	a)	Illustrate the IBM IoT conceptual framework for collecting data at remote locations into a database or data store. Identify the necessary services and processes for managing, acquiring, organizing, and analyzing the data.	<i>CO4</i>	<i>PO3</i>	12	
	b)	Outline the step-by-step process for designing a cloud-based home automation system, including a framework that describes each component's function within the system.	<i>CO4</i>	<i>PO3</i>	08	
