

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Electronics and Instrumentation Engineering

Duration: 3 hrs.

Course Code: 19EI5PCCST / 22EI5PCCST

Max Marks: 100

Course: Communication Systems

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Describe generation of AM signal using switching modulator and write relevant waveform.	CO2	PO1	08
	b)	For the following baseband signal, $m(t)=2\cos 1000\pi t \cos 2000\pi t$ find: i) Sketch the spectrum of $m(t)$ ii) Sketch the spectrum of DSB-SC signal $m(t)\cos 10,000\pi t$ iii) Identify the upper sideband and lower sideband spectra iv) Identify the frequencies in the baseband and the corresponding frequencies in the DSB-SC, USB and LSB spectra.	CO3	PO2	04
	c)	Explain with neat schematic the quadrature carrier multiplexing transmitter and receiver system.	CO2	PO1	08
OR					
2	a)	Derive an expression to determine the modulation index given the maximum and minimum values of the envelope of the modulated wave.	CO2	PO1	06
	b)	An AM transmitter radiates 9K watts of power when a carrier is unmodulated and 10.125K watts when the carrier is sinusoidally modulated. Find the modulation index and percentage of modulation. Now if another sine wave corresponding to 40 percent modulation is transmitted simultaneously, then calculate the total radiated power.	CO3	PO2	07
	c)	Describe the demodulation of DSB-SC using costas receiver.	CO2	PO1	07

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - II					
3	a)	An angle modulated signal having a carrier frequency $w_c = 2\pi \times 10^5$ is described by the equation $fm(t) = 10\cos(w_c t + 5\sin 3000t + 10\sin 2000\pi)$ a) Find the power of the modulated signal b) Find the frequency deviation Δf c) Find the deviation ratio β d) Find the phase deviation $\Delta\phi$ e) Estimate the bandwidth of $fm(t)$	CO3	PO2	10
	b)	With a neat block diagram and necessary equations explain the demodulation of FM using PLL method	CO2	PO1	10
OR					
4	a)	Show that FM wave generated from PM and PM wave from FM.	CO2	PO2	06
	b)	Prove that Wide Band Frequency Modulation (WBFM) having infinite number of side bands.	CO2	PO2	10
	c)	List the difference between AM and FM.	CO2	PO1	04
UNIT - III					
5	a)	With necessary equations derive the figure of merit in AM using envelope detection.	CO3	PO2	10
	b)	Discuss the necessity of pre-emphasis and de-emphasis circuits in FM modulation	CO3	PO2	10
OR					
6	a)	Derive the Figure of Merit (FOM) of Frequency Modulation using general FM receiver model.	CO3	PO2	10
	b)	Summarize the threshold effect in AM and FM system.	CO3	PO2	10
UNIT - IV					
7	a)	Determine the Nyquist sampling rate and Nyquist sampling interval for the signals: $x(t) = \sin 100\pi t$ $x(t) = \sin^2 100\pi t$ $x(t) = \sin(100\pi t) + \sin(50\pi t)$	CO3	PO2	06
	b)	With necessary waveform and circuit, discuss the generation of pulse amplitude modulated signal.	CO3	PO1	08
	c)	Explain with neat schematic the generation of PCM waveform.	CO3	PO1	06
OR					
8	a)	Discuss Quantization process in communication system.	CO3	PO1	06
	b)	With transmitter and receiver diagram explain the delta modulation system.	CO3	PO1	10
	c)	List the difference between natural sampling and flat top sampling.	CO3	PO1	04

UNIT - V					
9	a)	With necessary waveforms and block schematic, explain QPSK Transmitter.	CO4	PO1	06
	b)	Explain the BPSK generation with a block diagram and also discuss the spectrum of a BPSK signal.	CO4	PO2	08
	c)	Give the working principle of FDMA and CDMA	CO4	PO2	06
OR					
10	a)	A binary data stream 0 0 1 0 0 1 0 0 1 1 needs to be transmitted using DPSK technique. Prove that the reconstruction of DPSK signal remains the same even if the initial bit in the differentially encoded data is 0 or 1.	CO4	PO2	06
	b)	Explain the BFSK generation with a block diagram and also discuss the spectrum of a BFSK signal.	CO4	PO1	08
	c)	Represent the bit stream 10110011 in ASK, FSK and PSK	CO4	PO2	06
