

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Electronics and Instrumentation Engineering

Duration: 3 hrs.

Course Code: 22EI5PCCST

Max Marks: 100

Course: Communication Systems

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Define AM wave? Describe the generation of AM wave using switching modulator and sketch the waveform both time and frequency domain.	CO2	PO1	10
	b)	A certain transmitter radiates 8 kW with the carrier unmodulated and 10 kW, when the carrier is sinusoidally modulated. Calculate the modulation index. If another sine wave corresponding to 60% modulation is transmitted simultaneously determine the total radiated power.	CO2	PO1	04
	c)	Explain the reconstruction of DSB-SC signal using Costas receiver.	CO2	PO1	06
OR					
2	a)	Describe the process of generation of DSB-SC signal using ring modulator and represent the relevant waveforms.	CO2	PO1	10
	b)	An audio frequency signal amplitude of 10V and frequency of 100Hz is amplitude modulated with carrier amplitude of 20V and frequency of 10kHz. Calculate modulation index, frequency of each side bands and bandwidth required.	CO2	PO1	04
	c)	With neat circuit diagram explain construction and working of the Quadrature carrier multiplexing transmitter and receiver system.	CO2	PO1	06
UNIT - II					
3	a)	Summarize Wide Band Frequency modulation (WBFM) has infinite number of side bands.	CO3	PO2	08
	b)	Compare the Amplitude modulation and Frequency modulation techniques.	CO2	PO1	05

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Explain demodulation of the FM wave using balanced slope detector system.	CO2	PO1	07
		OR			
4	a)	With relevant diagram explain implementation of FM by PM and PM by FM.	CO3	PO2	06
	b)	With circuit diagram explain the generation of the NBFM signal using direct method.	CO2	PO1	07
	c)	Explain demodulation of the FM wave using phase locked loop system.	CO2	PO1	07
		UNIT - III			
5	a)	With relevant receiver model diagram derive the figure of merit of an AM receiver with envelope detector and show that FOM is equal to $\frac{\mu^2}{2+\mu^2}$	CO3	PO2	10
	b)	Interpret the Pre-emphasis and De-emphasis filters improves the reconstruction of FM wave.	CO3	PO2	10
		OR			
6	a)	Derive the figure of merit for an FM receiver is equal to $1.5 \beta^2$	CO3	PO2	10
	b)	Explain the threshold effects of the AM and FM system.	CO3	PO2	10
		UNIT - IV			
7	a)	Compare the natural sampling and flat top sampling.	CO2	PO1	05
	b)	With relevant diagram explain the Pulse Code Modulation (PCM) system.	CO2	PO1	05
	c)	Explain delta modulation system with relevant transmitter and receiver model. Sketch the waveform with slope overload distortion and granular noise.	CO3	PO2	10
		OR			
8	a)	Explain briefly on quantization process in digital communication.	CO2	PO1	05
	b)	With relevant block diagram explain the DPCM system.	CO2	PO1	08
	c)	With circuit diagram explain the generation of the PAM signal.	CO3	PO2	07
		UNIT - V			
9	a)	With suitable transmitter and receiver diagram explain the BPSK modulation, write the corresponding waveform and constellation diagram.	CO4	PO3	10
	b)	Sketch the waveform of the ASK and BFSK modulation for the given binary data {1 0 0 1 0 1 0 0 0 1 0 1} and write	CO4	PO3	05

			corresponding constellation diagram.			
		c)	Discuss Frequency Division Multiple Access (FDMA) technique in first generation cellular system.	CO4	PO3	05
			OR			
	10	a)	Given $m(n) = \{0 1 1 0 1 0 0 0\}$, sketch a suitable QPSK waveform and explain transmitter and receiver system.	CO4	PO3	10
		b)	Explain the transmitter of the DPSK modulator.	CO4	PO3	05
		c)	Describe the Time Division Multiple Access (TDMA) in second generation cellular system.	CO4	PO3	05

REAPPEAR EXAMS 2024-25