

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Electronics and Instrumentation Engineering

Duration: 3 hrs.

Course Code: 23EI5PCCST

Max Marks: 100

Course: Communication Systems

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

MODULE - I			CO	PO	Marks
1	a)	with suitable block diagram and necessary derivations, explain the working of switching modulator	<i>CO1</i>	<i>PO1</i>	08
	b)	Explain how costas receiver is used for demodulating DSBSC signal.	<i>CO1</i>	<i>PO1</i>	07
	c)	An audio frequency signal $5\sin 2\pi(1000)t$ is used to amplitude modulate a carrier of $100\sin 2\pi(10^6)t$. Assume modulation index is 0.4 find i) Sideband frequencies ii) Amplitude of each sideband iii) Bandwidth required	<i>CO1</i>	<i>PO2</i>	05
OR					
2	a)	Describe the operation of the ring modulator circuit which generates the DSBSC waves.	<i>CO1</i>	<i>PO1</i>	10
	b)	Explain with a neat diagram, the working of quadrature carrier multiplexing.	<i>CO1</i>	<i>PO1</i>	07
	c)	A broadcast transmitter radiates 20 kilowatts of power when the modulation percentage is 75. How much of carrier power required?	<i>CO1</i>	<i>PO2</i>	03
MODULE - II					
3	a)	Derive the expression for a narrow band FM signal.	<i>CO1</i>	<i>PO1</i>	08
	b)	With block diagram explain generation of FM wave using PM and PM wave using FM.	<i>CO1</i>	<i>PO1</i>	06
	c)	With a neat circuit diagram, explain FM demodulation using balanced slope detector.	<i>CO1</i>	<i>PO1</i>	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

OR					
4	a)	Explain the generation of FM wave with necessary circuit diagram and equations.	CO1	PO1	08
	b)	Distinguish between AM and FM system.	CO1	PO1	06
	c)	The equation for an FM wave is $s(t)=10\sin[5.7\times10^8t]+5\sin[12\times10^3t]$. Calculate (i) Carrier frequency (ii) Modulating frequency (iii) Modulation index (iv) Frequency deviation (v) Power dissipated in 100Ω	CO1	PO2	06
MODULE - III					
5	a)	Derive the expression of Figure of Merit (FOM) for a standard AM receiver.	CO2	PO2	08
	b)	Briefly explain the following terms related to FM system. (i) Pre-emphasis (ii) De-emphasis	CO2	PO1	08
	c)	A carrier wave of frequency 100kHz is frequency modulated by a sine wave of amplitude 5V and frequency 20kHz. Find the FOM of FM receiver if the frequency sensitivity of the modulator is 10kHz/volt.	CO2	PO2	04
OR					
6	a)	Derive the expression of FOM for a FM receiver model.	CO2	PO2	10
	b)	Explain the following term related to measure the efficiency of communication system. (i) Figure of Merit (ii) Signal to Noise ratios	CO2	PO1	06
	c)	An AM receiver operating with a sinusoidal wave and 80% modulation has an output signal to noise ratio of 30db. Calculate the corresponding signal carrier to noise ratio.	CO2	PO2	04
MODULE - IV					
7	a)	State sampling theorem and explain ideal sampling with neat sketches and equations.	CO3	PO1	06
	b)	Describe the construction of delta modulation system.	CO3	PO1	08
	c)	A 10kHz sinusoidal with amplitude 1V peak is quantized to have SNR of about 45dB. Find the number of bits required per sample, bit rate and bandwidth of the system, if sampling frequency is twice the Nyquist rate.	CO3	PO2	06
OR					

	8	a)	Explain the construction and regeneration of PCM signal.	CO3	PO1	10
		b)	With a neat circuit diagram explain the generation of PAM waves.	CO3	PO1	07
		c)	An analog signal is expressed by the equation $x(t)=3\cos 50 \pi t + 10\sin 300 \pi t + \cos 100 \pi t$. Calculate the Nyquist rate and Nyquist interval for this signal.	CO3	PO2	03
			MODULE - V			
9	a)		Describe with transmitter and receiver diagram the generation and detection of BPSK signal.	CO3	PO2	10
	b)		With block diagram explain the non-coherent detection of FSK signals.	CO3	PO1	06
	c)		Draw the signal space or constellation representation of BFSK and ASK signal.	CO3	PO1	04
			OR			
10	a)		Considering transmitter and receiver diagram, explain the generation and detection of QPSK signal.	CO3	PO2	10
	b)		Summarize the fundamental principles behind FDMA and TDMA in multiple access techniques.	CO3	PO1	06
	c)		Explain with a neat diagram the detection of BASK signal.	CO3	PO1	04
