

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: ES Cluster (EEE/ET/ECE/EIE/MD)

Duration: 3 hrs.

Course Code: 23EI5PCDSA / 22ES5PCDSP

Max Marks: 100

Course: Digital Signal Processing and Its Applications

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

MODULE - I			CO	PO	Marks
1	a)	<p>An analog electrocardiogram (ECG) signal contain useful frequencies upto 100 Hz.</p> <p>(i) Determine the Nyquist rate for this signal?</p> <p>(ii) Suppose if this signal is sampled at a rate of 250samples/second, what is the highest frequency that can be represented uniquely at this rate?.</p>	CO1	PO2	04
	b)	<p>Given a sequence $x[n] = [1,1,2,3]$, using the properties of DFT</p> <p>(i) Find the IDFT of $X((k-2))_4$</p> <p>(ii) Compute $X((-k))_4$</p> <p>(iii) Write IDFT of $Y(k) = X^2(k)$</p>	CO1	PO2	08
	c)	<p>Let $X(k)$ be a 14-point DFT of a length 14 real sequence $x(n)$. The first 8 samples of $X(k)$ are given by : $X(k) = \{12, -1 + j3, 3 + j4, 1 - j5, -2 + j2, 6 + j3, -2 - j3, 10\}$.</p> <p>(i) Determine the remaining samples of $X(k)$</p> <p>(ii) Using Parseval's relation, evaluate $\sum_{n=0}^{13} x(n) ^2$</p>	CO1	PO2	08
OR					
2	a)	<p>Given an analog signal $x_a(t) = 3 \cos(2000\pi t) + 5 \sin(6000\pi t) + 10 \cos(12000\pi t)$.</p> <p>(i) Determine the Nyquist rate for this signal?</p> <p>(ii) Suppose if this signal is sampled at a rate of 5000 samples/second. Write its discrete equivalent obtained after sampling</p>	CO1	PO2	04

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Apply DFT-IDFT method to compute the circular convolution of two given sequences $x[n]=\{2,3,1,1\}$, $h(n)=\{1,3,5,3\}$.	CO1	PO2	08
	c)	If $X(k)=\{1, 2+j, 3-j, 4\}$ be a 6-point DFT of a length 6 real sequence. Find (i) $x(0)$ (ii) $x(3)$ (iii) $\sum_{n=0}^5 x(n)$ without computing IDFT.	CO1	PO2	08
		MODULE - II			
3	a)	Compute the output $y(n)$ of a filter whose impulse response is $h(n)=\{1,1,1\}$ and input signal $x(n)=\{3,-1,0,1,3,2,0,1,2,1\}$ using overlap and save method. Use 5-point circular convolution.	CO2	PO2	08
	b)	Compute 8-point DFT of $h(n)=\{1,1,-1,-1\}$ using DIT-FFT radix-2 algorithm. Identify what type of filter is this: $LPF HPF BPF BSF?$	CO2	PO2	08
	c)	Compare the complex multiplications and additions needed for a 512 point sequence in the calculation of DFT using (i) Direct computation (ii) radix-2 FFT algorithm	CO2	PO2	04
		OR			
4	a)	Compute the output $y(n)$ of a filter whose impulse response is $h(n)=\{1,2\}$ and input signal $x(n)=\{1,-1,2,1,2,-1,1,3\}$ using overlap and add method. Use 5-point circular convolution.	CO2	PO2	08
	b)	Determine the time domain sequence $x[n]$ corresponding to the 8-point DFT using DIF-FFT radix-2 algorithm. $X(k) = \{4,1 - j2.414, 0, 1 - j0.414, 0, 1 + j0.414, 0, +j2.414\}$	CO2	PO2	08
	c)	Find the relation between DFT and Z transform	CO2	PO1	04
		MODULE - III			
5	a)	Design a digital IIR low pass Butterworth filter to meet the following specifications. Pass band ripple ≤ 3.01 dB Pass band edge frequency: 500 Hz. Stop band attenuation ≥ 15 dB Stop band edge frequency: 750 Hz. Sampling rate: 2000 Hz Use Bilinear transformation method.	CO3	PO2	12
	b)	Obtain the cascade form and Parallel form realization for the following system $y[n] = 0.75y[n - 1] - 0.125y[n - 2] + x[n] + \frac{1}{3}x[n - 1]$	CO3	PO2	08
		OR			
6	a)	Design a type-I Chebyshev analog lowpass filter to meet the following specifications. Pass band ripple ≤ 2.5 dB Pass band edge frequency= 20 rad/sec. Stop band attenuation ≥ 30 dB Stop band edge frequency=50 rad/sec	CO3	PO2	12

	b)	<p>Given</p> $H(s) = \frac{4}{(s+2)(s+3)}$ <p>Use impulse invariant transformation to convert this to H(z). Assume sampling interval of 2 sec.</p>	CO3	PO2	08
		MODULE - IV			
7	a)	<p>Design a FIR filter with a desired frequency response</p> $H_d(e^{j\omega}) = \begin{cases} e^{-j2\omega} & ; -\frac{\pi}{4} \leq \omega \leq \frac{\pi}{4} \\ 0 & ; \frac{\pi}{4} < \omega < \pi \end{cases}$ <p>Use a rectangular window with length 5. Also obtain the frequency response.</p>	CO3	PO2	08
	b)	<p>Realize the following system function in Direct form and linear phase form structures</p> $H(z) = 1 + 4z^{-1} + 4z^{-2} + z^{-3}$	CO3	PO2	08
	c)	Compare FIR and IIR filters	CO3	PO1	04
		OR			
8	a)	Use frequency sampling method to design a FIR filter with cutoff frequency 0.3π rad with 7 taps.	CO3	PO2	10
	b)	<p>Design a high pass FIR filter using Hamming window with frequency response</p> $H_d(e^{j\omega}) = \begin{cases} 1 & ; \frac{\pi}{4} \leq \omega \leq \pi \\ 0 & ; \omega \leq \frac{\pi}{4} \end{cases}$ <p>Find the value of $h(n)$ for length 11.</p>	CO3	PO2	10
		MODULE - V			
9	a)	Apply the LMS algorithm to adaptive filter for the system identification with relevant block diagram.	CO4	PO1	10
	b)	With a neat block diagram describe two stage interpolator and decimator, representing multistage implementation of sampling rate conversion	CO4	PO1	10
		OR			
10	a)	Discuss how the LMS algorithm is applied in adaptive filter for the noise cancellation	CO4	PO1	10
	b)	Discuss the role Adaptive filters in speech processing & radar systems.	CO4	PO1	10
