

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Electronics and Instrumentation Engineering

Duration: 3 hrs.

Course Code: 23EI5PCDSA

Max Marks: 100

Course: Digital Signal Processing and Its Applications

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

MODULE- I			CO	PO	Marks
1	a)	Describe the process of frequency domain sampling and reconstruction of discrete time signal.	<i>CO1</i>	<i>PO1</i>	10
	b)	Find the 4-pt DFT of the sequence $x(n)=\{1,-2,3,2\}$ directly.	<i>CO1</i>	<i>PO1</i>	04
	c)	Compute the circular convolution using DFT and IDFT for the following sequences : $x_1[n] = [2, 3, 1, 1]$ and $x_2[n] = [1, 3, 5, 3]$	<i>CO1</i>	<i>PO2</i>	06
OR					
2	a)	If $x(n)=[1,2,0,3,-2, 4,7,5]$ evaluate the following i) $X(0)$ ii) $X(4)$ iii) $\sum_{k=0}^7 X(k) ^2$	<i>CO1</i>	<i>PO2</i>	05
	b)	Find Inverse Discrete Fourier Transform of the following signal $X(k) = [6, -1 - j1, 0, -1 + j1]$	<i>CO1</i>	<i>PO1</i>	05
	c)	Determine the circular convolution of the sequences using DFT-IDFT. $X_1(n) = \{4,5,6,7\}$ and $X_2(n) = \{1,2,3,4\}$.	<i>CO1</i>	<i>PO2</i>	10
MODULE - II					
3	a)	Derive the DIT-FFT algorithm with necessary equation and also draw the signal flow graph for $N=8$	<i>CO1</i>	<i>PO2</i>	10
	b)	Using overlap add method, compute the output of an FIR filter with impulse response $h(n) = \{1, 1, 1\}$ and input $x(n) = \{3, -1, 0, 1, 3, 2, 0, 1, 2, 1\}$	<i>CO1</i>	<i>PO2</i>	10
OR					
4	a)	Determine the DFT of the sequence $x(n)=\{1,2,3,4,4,3,2,1\}$ using DIF-FFT	<i>CO1</i>	<i>PO2</i>	08
	b)	Find the 4-point IDFT of the sequence $X(k)= [6, -2+2j, -2, -2-2j]$ using DIT-FFT algorithm	<i>CO1</i>	<i>PO2</i>	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Obtain the relationship of DFT with the Z-transform	CO1	PO1	06
		MODULE - III			
5	a)	Convert the analog filter with system function $H_a(S) = \frac{1}{(s + 0.1)^2 + 3^2}$ into a digital IIR filter by means of the impulse invariance method.	CO3	PO2	05
	b)	Design an analog chebyshev filter with the following specifications: Passband ripple: 1dB for $0 \leq \Omega \leq 10\text{rad/sec}$. Stopband attenuation: -60dB for $\Omega \geq 50\text{rad/sec}$.	CO3	PO3	10
	c)	Compare analog and digital filters	CO3	PO1	05
		OR			
6	a)	Derive BLT Equation $S = \frac{2}{T} \left(\frac{1-Z^{-1}}{1+Z^{-1}} \right)$	CO3	PO1	08
	b)	Let $H(s) = \frac{1}{s^2 + \sqrt{2}s + 1}$ represent the transfer function of a low pass filter with a passband of 1rad/sec . Use frequency transformation to find the transfer function of the following analog filters i) A lowpass filter with passband of 10rad/sec ii) A highpass filter with cutoff freq of 10rad/sec	CO3	PO2	04
	c)	Realize the given system in cascade and parallel form $H(z) = \frac{1 + 0.25Z^{-1}}{(1 - 2Z^{-1} + 0.25Z^{-2})(1 - 3Z^{-1} + 0.25Z^{-2})}$	CO3	PO2	08
		MODULE - IV			
7	a)	Illustrates the following with magnitude frequency response and side lobe attenuation i) Rectangular window ii) Hamming window	CO3	PO2	08
	b)	Determine the co-efficients $h(n)$ for a liner phase FIR filter of length $M=15$, which has a symmetric unit impulse response and a frequency response that satisfies $H\left(\frac{2\pi K}{15}\right) = \begin{cases} 1 & ; K = 0, 1, 2, 3 \\ 0 & ; K = 4, 5, 6, 7 \end{cases}$	CO3	PO2	08
	c)	Realize the linear phase FIR filter having the impulse response $h(n) = \delta(n) + \frac{1}{4}\delta(n - 1) - \frac{1}{8}\delta(n - 2) + \frac{1}{4}\delta(n - 3) + \delta(n - 4)$	CO3	PO2	04
		OR			

	8	a)	<p>The desired frequency response of the low pass filter is given by</p> $H(e^{jw}) = \begin{cases} e^{-j3w} & ; w < \frac{3\pi}{4} \\ 0 & ; \frac{3\pi}{4} < w < \pi \end{cases}$ <p>Determine the frequency response of FIR filter using hamming window for N=7.</p>	CO3	PO2	10
		b)	Differentiate between FIR and IIR filter	CO3	PO1	05
		c)	<p>Realize the system function given by</p> $H(z) = 1 - 2z^{-1} + \frac{1}{2}z^{-2} + \frac{1}{2}z^{-3} + \frac{1}{2}z^{-4}$ <p>Using Direct form</p>	CO3	PO2	05
MODULE - V						
	9	a)	With a neat block diagram explain the working of adaptive noise canceller	CO4	PO2	10
		b)	Explain sampling rate conversion by a rational factor I/D	CO4	PO2	10
OR						
	10	a)	Illustrate the need of multirate signal processing	CO4	PO2	05
		b)	Discuss about the LMS algorithm.	CO4	PO2	05
		c)	With a neat block diagram describe two stage interpolator and decimator, representing multistage implementation of sampling rate conversion	CO4	PO2	10
