

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

May 2023 Semester End Make-Up Examinations

Programme: B.E.

Semester: V

Branch: Electronics and Instrumentation Engineering

Duration: 3 hrs.

Course Code: 19EI5PCPCS

Max Marks: 100

Course: Process Control Systems

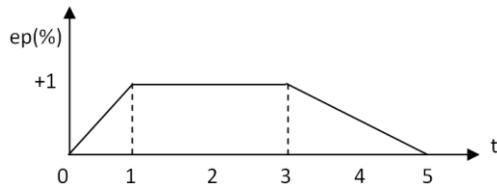
Date: 17.05.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1	a) Describe the working of process control system with a neat diagram.	06
	b) With an example of cracker baking system, illustrate the operation of process control system for final control operation.	06
	c) A 4 bit digital word is intended to control the setting of 2Ω DC resistive heater. Heater output varies as 0-24V input to heater using 10V DAC followed by an amplifier with high current output. Calculate <ul style="list-style-type: none"> i. Settings from minimum to maximum heat dissipation. ii. How power varies with LSB change. 	08

UNIT - II


2	a) Classify the general types of signal conditioning in analog circuits. Briefly explain the concept of signal level and bias changes, linearization.	08
	b) A sensor outputs a range of 20-250mV as a variable varies over its range. Develop a signal conditioning so that it becomes 0-5V. the circuit must have very high input impedance	04
	c) Illustrate the working of integral control mode with error signal and summarize the characteristics of it.	08

OR

3	a) Discuss the working of integrator and differentiator with op-amp circuit and necessary equations.	10
---	--	----

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

b) For the error graph shown, applied to a PD controller with $K_p=5$, $K_d=0.5\text{Sec}$ and $P_0=20\%$. Draw a graph of resulting controller output. 10

UNIT - III

4 a) Mention the general features of analog controller and list different parts of analog controller. 04

b) Derive an expression for 2 position controller using op-amp with a graph for neutral zone signal. 08

c) A temperature control system inputs the controller variable as a range from 0-4V. The output of a heater requiring 0-8V. A PID is to be used with $K_p=2.4\%/\%$, $K_i=9\%/\text{min}$, $K_d=0.7\%/(\%/\text{min})$. The period of the fastest expected change is estimated to be 8Secs. Develop the PID circuit. 08

OR

5 a) With an example of tank level system, describe the function of multi-variable alarm. 08

b) Explain the working of supervisory system used for monitoring, measurement and output control using computer. 08

c) Write the flow chart for derivative mode with its equation used in digital controller. 04

UNIT - IV

6 a) Explain open loop transient response method of process loop tuning as applied to PID controller. 10

b) In the Ziegler-nichols method, the critical gain is found to be 4.2 and the critical period is 2.21 minute. Find the standard setting for
 i. Proportional control
 ii. PI control
 iii. PID control 04

c) With a neat block diagram, explain the working of cascade process control System. 06

UNIT - V

7 a) Write a short note on following concepts 10
 i. Availability system
 ii. Reliability system

b) List and explain various hazards in process industries. 10
