

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Electronics and Instrumentation Engineering

Duration: 3 hrs.

Course Code: 23EI5PCPCS / 22EI5PCPCS

Max Marks: 100

Course: Process Control Systems

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

MODULE - I			CO	PO	Marks
1	a)	Construct a block diagram of a flow rate process control loop by identifying and organizing the various process elements under appropriate functional blocks.	CO1	PO1	08
	b)	Demonstrate the operation of a Direct Digital Control (DDC) system and a Supervisory Control system for controlling a heater in an oven using a block diagram.	CO1	PO1	08
	c)	A sensor resistance changes linearly from 100Ω to 180Ω as temperature changes from 20°C to 120°C . Find a linear equation relating to resistance and temperature.	CO1	PO2	04
OR					
2	a)	Draw the physical and block diagram of a feedback control loop in a temperature control system. Analyze and assess the role of current and pressure transmission signals in the system.	CO1	PO1	08
	b)	Identify and analyze three key criteria used to evaluate the performance of a process control loop. Discuss the impact of each criterion on the loop's ability to maintain the desired system behavior.	CO1	PO2	08
	c)	A level sensor inputs a range from 4.50 to 10.6 ft and outputs a pressure range from 3 to 15 psi. Find an equation between level and pressure. What is the pressure for the level of 9.2 ft?	CO1	PO2	04
MODULE - II					
3	a)	Classify the various types of actuators. Describe the principle operation of the spring-and-diaphragm pneumatic actuator with simple diagram.	CO5	PO1	08
	b)	Define the term "correction factor" in the context of control valve sizing. Find the Cv for a valve that must allow 150 gallons of ethyl alcohol per minute with a specific gravity of 0.8 at a maximum pressure of 50 psi.	CO5	PO2	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Describe how you would select an appropriate control valve to regulate flow in a system. An equal percentage valve has a maximum flow of $50 \text{ cm}^3/\text{sec}$. and a minimum of $2 \text{ cm}^3/\text{sec}$. If the full travel is 3 cm, find the flow at a 1- cm opening.	CO5	PO2	06
		OR			
4	a)	Describe the types of control valves and explain the flow characteristics of quick-opening, linear, and equal-percentage valves based on stem position. Create a graph to show these relationships.	CO5	PO1	08
	b)	Explain, with a diagram, the working of a signal conversion system that converts pressure into mechanical motion and vice versa. Analyze the factors that affect its efficiency.	CO5	PO1	06
	c)	Identify and describe the different types of instrumentation symbols and interconnection lines used in P&IDs.	CO2	PO1	06
		MODULE - III			
5	a)	The thermocouple sensor outputs a range of 20 to 250 mV as the temperature varies over its range. Design a signal conditioning circuit, so that the output becomes 0 to 5V. The circuit must have very high input impedance.	CO3	PO3	06
	b)	Using labelled schematic, analyse and explain the following concepts related to process control system: i) Process equation ii) Process lag iii) Dead time iv) Self-regulated process	CO3	PO1	08
	c)	Differentiate between discontinuous and continuous controller modes. A proportional controller controls the level from 2.8 meters to 6.5 meters with a 3.7-meter set point. The proportional gain is $5\%/\%$, and no error output is 54%. What is the controller output for levels of 3.5 meters and 4.0 meters?	CO3	PO2	06
		OR			
6	a)	Classify the modes of control actions based on application. In a single-speed floating control, the process error is within the neutral zone, with the controller output (p) at 25%. At time $t=0$, the error falls below the neutral zone. Given the rate of change of error is $k = 2\%/\text{sec}$, calculate the time when the output reaches saturation.	CO3	PO2	06
	b)	Explain and analyze the following concepts with graphical diagrams: i) The 'Neutral zone' in a 2-position controller ii) The 'Offset error' in a proportional controller iii) The 'Overshoot' and 'Cycling' problem of PI controller modes.	CO3	PO1	08
	c)	What is the need of signal conditioning circuits & discuss signal level and bias changing circuits importance?	CO3	PO1	06

MODULE - IV					
7	a)	Draw the circuit of an error detector, using ground based current and a differential amplifier. Design a two-position controller that provides an output of 5V at 250°C and drops to 0V when the temperature falls to 240°C, with a 0°C reference.	CO3	PO3	08
	b)	A proportional-derivative controller has a 0.4- to 2.0-V input measurement range, a 0- to 5-V output, K_p 5%/%, and K_D 0.08% per (%/min). The period of the fastest expected signal change is 1.5 s. Implement this controller with an op amp circuit	CO3	PO3	06
	c)	Illustrate with a clear schematic diagram and explain the details of Data loggers.			06
OR					
8	a)	A temperature-control system inputs the controlled variable as a range from 0 to 4 V. The output is a heater requiring 0 to 8 V. A PID is to be used with K_p = 2.4%/%, K_I = 9%/(%/min), and K_D = 0.7%/(%/min). The period of the fastest expected change is estimated to be 8 s. Design and draw the PID circuit.	CO3	PO2	08
	b)	Discuss the working of digital two position controller.	CO3	PO2	06
	c)	Level measurement in a sump tank is provided by a transducer scaled as 0.2 V/m. A pump is to be turned on by application of +5 V when the sump level exceeds 2.0 m. The pump is to be turned back off when the sump level drops to 1.5 m. Develop a two-position controller.	CO3	PO1	06
MODULE - V					
9	a)	Define control system quality in the context of process loop performance.	CO4	PO1	06
	b)	What does the term 'tuning' mean? Describe the process of tuning a controller using the open-loop transient response method, including a process reaction curve. Provide the Ziegler–Nichols empirical relations for tuning a three-mode PID controller.	CO4	PO2	08
	c)	Using appropriate diagrams illustrate and explain the operation of cascade control system in a process control application.	CO4	PO1	06
OR					
10	a)	Define three standard measures of quality in a control system.	CO4	PO1	06
	b)	Discuss the steps of Ziegler-Nichols tuning method and also detail the prescribed parameter configurations for proportional, PI and PID controllers.	CO4	PO1	08
	c)	Implement split range controllers using a suitable example.	CO4	PO1	06
