

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June / July 2025 Semester End Main Examinations

Programme: B.E.

Branch: Electronics & Instrumentation Engineering

Course Code: 23EI5PCVLI

Course: VLSI DESIGN

Semester: V

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

MODULE - I			CO	PO	Marks
1	a)	State and explain Moore's Law with relevant sketch.	<i>CO1</i>	-	06
	b)	Discuss fabrication process of an P-well process with neat diagram.	<i>CO1</i>	-	10
	c)	Compare Bipolar and CMOS Technologies	<i>CO1</i>	-	04
OR					
2	a)	Derive pull up to pull down ratio of an NMOS inverter driven through one or More pass transistor	<i>CO2</i>	<i>PO1</i>	10
	b)	List out and discuss alternative forms of pull-up transistor	<i>CO2</i>	<i>PO1</i>	06
	c)	Discuss CMOS inverter with neat sketch	<i>CO2</i>	<i>PO1</i>	04
MODULE- II					
3	a)	Obtain the scaling factor for the following parameter of a transistor a)Gate capacitance C_x b)Parasitic Capacitance C_x c)Saturation current I_{dss}	<i>CO2</i>	<i>PO1</i>	06
	b)	Construct schematic and CMOS stick Diagram for $Y = \overline{A} + \overline{B}\overline{C}\overline{D}$	<i>CO2</i>	<i>PO1</i>	06
	c)	With neat sketches, Discuss the lambda based design rules for wires, NMOS,PMOS and CMOS transistor	<i>CO2</i>	<i>PO1</i>	08
OR					
4	a)	Design briefly lambda based design rules for wires	<i>CO3</i>	<i>PO3</i>	07
	b)	What is the important of scaling? Find the scaling factors for Area, gate delay, power dissipation per gate, operating frequency	<i>CO2</i>	<i>PO2</i>	07
	c)	Design 1- bit shift register with neat sketch	<i>CO3</i>	<i>PO2</i>	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

MODULE - III					
5	a)	Design and implement Bus arbitration logic Using structured design along with stick diagram	CO3	PO3	10
	b)	What is parity generator and summarize briefly about structured design approach for the implementation of parity generator and also draw mos stick diagram for parity generator	CO4	PO2	10
OR					
6	a)	Discuss with neat sketch n-p CMOS and Dynamic CMOS three input Nand gate logic	CO2	PO2	10
	b)	Draw the schematic, stick diagram for nmos,CMOS and BICMOS 2 input Nand gate	CO2	PO2	10
MODULE - IV					
7	a)	Design four bit dynamic CMOS shift register using CMOS transmission gate switched logic and also draw the CMOS shift register cell.	CO3	PO3	10
	b)	With neat sketch Design and discuss 4X4 barrel shifter circuit.	CO3	PO3	10
OR					
8	a)	Develop basic bus architectures design approach for the implementation of tentative floor plan for 4-bit data path.	CO4	PO2	10
	b)	Design Two-phase clock generator circuit using D flip flop	CO3	PO3	10
MODULE- V					
9	a)	Realize Three -transistor dynamic memory cell and also draw CMOS stick diagram.	CO5	PO4	10
	b)	Implement and discuss 4 T and 6 T dynamic and static memory cell.	CO5	PO4	10
OR					
10	a)	Implement and discuss nMOS and CMOS pseudo static Memory cell	CO5	PO4	12
	b)	Explain the optimization that can be applied for an CMOS inverter design	CO5	PO4	08
