

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S.College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Electronics and Instrumentation Engineering

Duration: 3 hrs.

Course Code: 23EI5PCVLI

Max Marks: 100

Course: Basics of VLSI Design

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.

2. Missing data, if any, may be suitably assumed.

MODULE - I			CO	PO	Marks
1	a)	With a neat diagram, discuss the importance of Moore's Law. With neat sketch and Explain Generations of an IC?	CO1	PO1	06
	b)	Elaborate the various fabrication steps involved in fabrication of nMOS transistor	CO1	PO1	10
	c)	Bring out the comparison between Bipolar and CMOS technologies	CO1	PO1	04
OR					
2	a)	Enlist the advantages and disadvantages of using Bi-CMOS technology in IC fabrication	CO1	PO2	04
	b)	With relevant mathematical expression, derive pull up to pull down ratio of an NMOS inverter driven through one or More pass transistor.	CO2	PO2	10
	c)	Highlight the process of Latch-Up in VLSI. List out and discuss the remedies that are to be considered to overcome the same.	CO2	PO1	06
MODULE - II					
3	a)	Discuss transistor design rules for NMOS, PMOS and CMOS transistor	CO2	PO1	08
	b)	Suggest the alternative forms of pull up for an inverter configuration	CO2	PO2	06
	c)	Obtain the scaling factor for the following parameter of a transistor i) Power-speed Product P_t ii) Maximum Operating Frequency F_o iii) Saturation Current I_{dss}	CO2	PO2	06
OR					
4	a)	With relevant diagram, discuss the working 1 bit shift register	CO2	PO2	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		showcasing different stages.			
	b)	Draw the stick diagram for 2-input nMOS, 2-input NOR and 2-input NAND Gate	CO2	PO2	08
	c)	Obtain the scaling factor for the following parameter of a transistor i) Channel resistance R_{ON} ii) Gate delay.	CO2	PO3	04
		MODULE - III			
5	a)	Develop a structured design of a bus arbitration logic for a n line bus	CO3	PO4	10
	b)	Discuss with neat sketch and relevant waveform Dynamic CMOS and Pseudo -nMOS logic	CO3	PO4	10
		OR			
6	a)	Design, implement and explain NOR and Inverter gate using Clocked CMOS logic	CO3	PO3	10
	b)	Explain structured design approach for the implementing parity generator. Draw nMOS stick diagram for parity generator	CO3	PO4	10
		MODULE - IV			
7	a)	Implement and explain 4x4 barrel shifter.	CO3	PO3	06
	b)	Discuss General Arrangement of a 4-bft Arithmetic Processor	CO3	PO3	04
	c)	Describe the cascading structure of 4-bit nMOS dynamic shift register along with stick Diagram.	CO3	PO3	10
		OR			
8	a)	Develop basic bus architectures design approach for the implementation of tentative floor plan for 4-bit data path	CO3	PO2	10
	b)	Design and explain Two-phase clock generator circuit using D flip flop	CO3	PO2	10
		MODULE - V			
9	a)	Discuss with neat sketch, Design Rule Checker and circuit extractor.	CO4	PO12	10
	b)	With circuit diagram describe four transistor dynamic and six transistor Static CMOS memory cell.	CO4	PO12	10
		OR			
10	a)	With neat sketch Discuss nMOS and CMOS Pseudo static memory cell	CO5	PO12	10
	b)	Bring out a summative assessment of 3T dynamic RAM cell in terms of working, area occupied, dissipation and volatility.	CO5	PO12	10
