

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

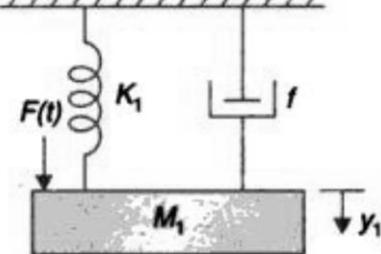
July 2023 Semester End Main Examinations

Programme: B.E.

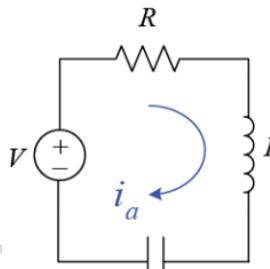
Branch: Institutional Elective

Course Code: 19EI6OE1MD

Course: Multidomain System Modelling


Semester: VI

Duration: 3 hrs.


Max Marks: 100

Date: 07.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	What are dynamic systems? Differentiate classical modeling from data-driven Modeling with an example for each	CO2	PO2	08
	b)	List the purpose of modeling and simulation of a given system. Explain how the simulation models play a role in system analysis?	CO2	PO2	06
	c)	Population dynamics of predator-prey is as follows. (i) Prey can find food, but gets killed on meeting predator (ii) Prey, if left alone, grows at a rate proportional to x_1 , x_1 being the number of Prey (iii) Predator, on meeting prey, kills it at the rate proportional to x_1x_2 , x_2 being the number of predators. Develop an approach using numerical method to solve differential equations.	CO1	PO1	06
UNIT-II					
2	a)	<p>Fig .2.a</p> <p>Consider a mechanical system as shown in Fig.2.a consisting of Mass M_1, Spring K_1 and damper f, respectively. Assume $F(t)=50 u(t)$ N, $M_1=2$ kg, $K_1= 3$ N/m, $f=1$ N-s/m , $y_1(0)=0$ and the displacement is $y_1(t)$. Write the differential equation for the above system and obtain the response of the system.</p>	CO2	PO2	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	The following equation represents Newton Cooling $mc_p \dot{T} = hA(T_\infty - T)$. Explain the behavioral modelling of the above example using equation method of modelling using open modelica	CO2	PO2	10
		OR			
3	a)	Represent a bouncing ball model by plotting its trajectory over time by choosing appropriate model parameters, and discuss about numerical imprecisions. Justify that it is a “state event”.	CO3	PO3	10
	b)	Why do we need numerical solutions? Name any two numerical approximations Methods used in modelling.	CO2	PO2	10
		UNIT - III			
4	a)	What are ‘parameters’ and ‘constants’ used in open modelica programming language? Explain with an example.	CO3	PO2	06
	b)	How do you identify a ‘state variable’ in a dynamic system? Consider a first order mechanical system to identify a state variable.	CO3	PO2	06
	c)	Obtain the second order differential equation for the RLC circuit shown in Fig 3a and sketch the step response for the same using simulation.	CO3	PO3	08
		 Fig 3a			
		OR			
5	a)	Name the three different approaches of modelling a system which is dynamic in nature using OpenModelica. Represent the modelling by block diagram approach of a pendulum using Open-Modelica Library. Justify the selection of each block.	CO3	PO2	10

	b)	<p>A tank Model is shown in the following diagram (Fig 6.a)</p> <p>Fig 6.a</p> <p>Write the necessary equations and Model the level control operation for the tank system using open Modelica, which uses a level sensor and a controller to control the valve position.</p>	CO3	PO2	10
		UNIT - IV			
6	a)	<p>Differentiate Acausal connectors from block connectors. Explain how to create the following components in open-modelica.</p> <p>(i)Resistor (ii)capacitor (iii)Voltage Source and (iv)Ground</p>	CO3	PO2	10
	b)	<p>Describe the underlying equations of “A second order rotational system”</p> <p>Each inertia J, has a rotational position, φ, and a rotational speed, ω, where $\omega = \frac{d\varphi}{dt}$; C and D are constants. For each inertia, the balance of angular momentum for the inertia can be expressed as</p> <ol style="list-style-type: none"> 1. Equation for Inertia....$J \frac{d\omega}{dt} = \sum_i \tau_i$ 2. Equation for Spring ...$\tau = C\Delta\varphi$ 3. Equation for damper $\tau = D\Delta \frac{d\varphi}{dt}$ <p>Represent the block diagram and sketch the response of the system for different values of input Torque (tow1) by creating a simulation model</p>	CO3	PO3	10
		UNIT - V			
7	a)	<p>Fig 7a</p>	CO3	PO3	10

		<p>The Fig 7a represent DC power supply consisting of subsystems. Identify the each sub-system and the components in the circuit Create the circuit diagram for DC power supply with all the components and their connection.</p>			
	b)	<p>What do you mean by multibody library in open modelica. Explain how to develop subsystem model for Pendulum Model using multibody library of open modelica</p>	CO3	PO3	10

B.M.S.C.E. - EVEN SEM 2022-23